
 i

Abstract

Supporting The Development of

Mobile Context-Aware Systems

Keith Mitchell

Computing Department,

Lancaster University,

England, U.K.

Submitted for the degree of Doctor of Philosophy,

January, 2002

The recent convergence of mobile and context-aware systems has seen a considerable

rise in interest in applications that exploit aspects of the operating environment to

offer services, tailor application behaviour or trigger adaptation. However, as a result

of the lack of generic mechanisms for supporting user mobility and context awareness

within dynamic environments, context-aware applications remain very difficult to

build and developers must deal with a wide range of issues which may be incidental to

the development of new applications. As a result of these issues, few mobile context-

 ii

aware applications exist outside the boundaries of the research laboratory and even

fewer have been realistically deployed and evaluated in real world settings.

In addition, traditional context-aware applications are poorly suited to highly mobile

or distributed environments and often unable to tolerate a rapidly changing execution

environment, or take advantage of the availability of new services. Moreover,

existing approaches to the development of context-aware applications are, in general,

highly reliant upon the underlying infrastructure. Consequently application

developers must build their applications with specific environments (indoor or

outdoor) or services in mind. As a consequence, this makes applications less flexible,

that is, portable across different end-systems and operating environments, difficult to

extend or evolve their functionality, and crucially, unable to tolerate use in a

fluctuating service environment.

This thesis describes the design and implementation of a context-service based

architecture to support the development of mobile context-aware applications

designed for use in distributed environments, addressing the salient challenges that

this involves. The approach is validated using a real world mobile context-aware

application, the Lancaster GUIDE system. The GUIDE system is used as a vehicle

for research into the area of mobile context-awareness and, through a retrospective

analysis and evaluation of the GUIDE approach, the ideas presented in this thesis

have been established. This thesis demonstrates how a re-engineered version of the

GUIDE prototype benefits from the service based approach in terms of its flexibility.

More specifically, the re-engineered version of GUIDE is better able to operate in a

rapidly changing execution environment. The overall results provide a valuable

insight into the effectiveness and applicability of the service based approach to the

mobile domain in general, and suggests that context-services provide a useful model

for the development and experimentation of a wide range of context-aware systems.

 iii

Declaration

The overall concept of the context-service based architecture to support context-aware

applications within dynamic mobile environments was my own. The use of the

GUIDE and GUIDE II EPSRC funded research projects (grant numbers GR/L05280

and GR/CSA7622 respectively) provided an invaluable and unique research

environment with which to experiment and develop the ideas presented in this thesis.

The design and implementation of the context service provider (CSP) and prototype

context-services was conducted by myself. The concept of the context service was

established and developed during a number of extensions to the original GUIDE

implementation and benefited from discussions with colleagues from Lancaster

involved with the GUIDE projects. However, the GUIDE and GUIDE II prototype

implementations detailed in chapters three and six respectively were implemented by

myself.

The work reported in this thesis has not been previously submitted for a degree, in this

or any other form.

 iv

Acknowledgements

The process of completing a Ph.D. thesis is a very personal journey, however it does

require the help and support of many others to successfully complete the task. Here I

wish to express my thanks to all who have been involved in supporting me during the

completion of my Ph.D.

I would like to begin by thanking Professor Nigel Davies for providing me with the

initial opportunity to work within such a dynamic and exciting team of researchers

and, furthermore, for all the help, support, motivation and opportunities he has

provided me with over the years. Secondly, I would like to thank Professor Gordon

Blair for agreeing to continue my supervision during Nigel‟s absence and for his

continued advice, encouragement, commitment and constructive criticism throughout

the preparation of this document. I would also like to extend my thanks to my closest

work colleague (and pseudo-supervisor!) Dr. Keith Cheverst, whose informal support

and words of encouragement have been very significant to my progress both during

the implementation and writing up phases of my research. The numerous coffees,

B.L.T.s and games of pool over the last few years have certainly helped! My other

colleagues within the Distributed Multimedia Research Group (DMRG) at Lancaster

must also be thanked for providing a constructive environment in which the ideas

presented within this thesis have been established. In particular, Dr Adrian Friday for

his support during the early stages of the GUIDE project and Matthew Storey, with

whom I have not only shared office space with but the whole Ph.D. process. Finally,

since the GUIDE project was a collaborative venture between Lancaster University

 v

and Lancaster City Council, I would like to thank all involved in the project,

particularly, the industrial partners, HP Labs (Bristol) and Lucent Technologies.

I fully appreciate the support of my parents, Lisa and Allan, in providing me with a

good educational foundation and, perhaps most importantly, the opportunity to attend

University. The desire for learning gained as a child has led me to academia and

provided me with a strong basis for establishing my future research career. Little did

I realise back then as a child how useful my early exposure to computer technology

and my early programming skills would prove to be!

Many sacrifices and compromises have to be made during the completion of a Ph.D.

and I would like to express my deepest gratitude to my partner Fiona who has, more

than anyone, had to make sacrifices to enable me to complete my Ph.D., often at the

cost of her own Ph.D. progress. Furthermore, her consistent love, support and

friendship has made the process of writing this thesis tolerable. During the many

times I have doubted myself and my work, she has provided the encouragement and

motivation to push on. I simply could not have reached this point without her and for

that I am eternally grateful. As a reward, both you and my two lovely daughters Isla

and Leila have had to bear the brunt of all the ups and downs that are associated with

completing a Ph.D. (sorry!). I only hope that I can offer you (Fiona) a similar level of

support throughout your Ph.D. research and thesis write-up.

To you all, thanks!

 vi

How do (will) people use mobile systems and applications? [Satyanarayanan, 96].

 vii

Contents

Abstract ... i

Declaration ...iii

Acknowledgements ... iv

Contents ... vii

Figures .. xiv

Tables .. xviii

Chapter 1 ... 1

 Introduction .. 1

1.1 Overview ... 1

1.2 Underlying Technologies .. 2

1.2.1 Personal Devices ... 3

1.2.2 Communications ... 4

1.3 Sensing Technologies ... 6

1.3.1 Location .. 6

1.3.2 Physical Environment ... 7

1.3.3 Physiological Environment ... 7

1.4 Introduction To Context .. 8

1.5 Context-Awareness ... 10

1.6 Research Aims and Methodology ... 11

1.7 Thesis Outline ... 14

Chapter 2 ... 15

 Related Work .. 15

2.1 Introduction ... 15

2.2 Supporting User Mobility ... 16

2.2.1 Introduction ... 16

 viii

2.2.2 Disconnected Operation .. 16

2.2.2.1 Mobile File Systems .. 16

2.2.2.2 Bayou .. 17

2.2.2.3 The Rover Toolkit ... 18

2.2.2.4 TACOMA and TACOMA Lite ... 19

2.2.2.5 Summary .. 20

2.2.3 Interaction Models .. 20

2.2.3.1 Overview ... 20

2.2.3.2 Traditional Data Dissemination Techniques ... 20

2.2.3.3 Alternative Approaches to Data Dissemination .. 21

2.2.3.4 Summary ... 23

2.2.4 Dynamic Discovery ... 24

2.2.4.1 Overview ... 24

2.2.4.2 Universal Plug and Play (UPnP) ... 25

2.2.4.3 Jini ... 26

2.2.4.4 Service Location Protocol ... 27

2.2.4.5 Summary ... 28

2.2.5 Analysis of Supporting User Mobility .. 29

2.3 Context-Awareness ... 30

2.3.1 Introduction ... 30

2.3.2 Context Capture .. 30

2.3.2.1 Introduction ... 30

2.3.2.2 Active Maps .. 31

2.3.2.3 Cyberguide .. 32

2.3.2.4 Teleporting .. 33

2.3.2.5 CyberDesk ... 33

2.3.2.6 Summary ... 33

2.3.3 Context Selection .. 34

2.3.3.1 Introduction ... 34

2.3.3.2 Context Toolkit ... 34

2.3.3.3 Context Information Service ... 35

2.3.3.4 TEA ... 36

2.3.3.5 Audio Aura .. 37

2.3.3.6 AROMA .. 38

2.3.3.7 Summary ... 38

2.3.4 Using Context.. 39

2.3.4.1 Stick-E Notes ... 39

2.3.4.2 PARCTAB and Active Maps .. 39

2.3.4.3 Cooltown ... 40

2.3.4.4 EasyLiving .. 41

 ix

2.3.4.5 Forget-Me-Not and Satchel ... 42

2.3.4.6 Summary ... 42

2.3.5 Analysis of Supporting Context-Awareness ... 43

2.4 Conclusions ... 44

Chapter 3 ... 46

 The GUIDE Prototype.. 46

3.1 Introduction ... 46

3.2 The GUIDE Project Overview .. 46

3.2.1 Background ... 46

3.2.2 General Requirements for Supporting City Visitors ... 47

3.3 The GUIDE Infrastructure .. 49

3.3.1 End System Selection .. 50

3.3.2 Communications Infrastructure ... 51

3.3.2.1 Overview ... 51

3.3.2.2 System Architecture .. 52

3.3.3 Communications Protocol ... 53

3.3.3.1 Overview ... 53

3.3.3.2 Engineering issues ... 55

3.4 Modelling Context-Sensitive Information in GUIDE ... 57

3.4.1 Overview ... 57

3.4.2 Modelling Location ... 58

3.4.2.1 Overview ... 58

3.4.2.2 Location Objects ... 59

3.4.2.3 Navigation Objects .. 61

3.4.2.4 Modelling A City .. 61

3.4.2.5 Modelling Context ... 62

3.4.3 Hypertext Information and GUIDETAGS .. 62

3.4.3.1 Overview ... 62

3.4.3.2 GUIDETAGS .. 63

3.4.3.3 Generating Dynamic URLs and Content ... 64

3.5 The GUIDE Application Design and Implementation .. 65

3.5.1 Overview ... 65

3.5.2 The GUIDE Browser ... 65

3.5.3 The GUIDE Client Agent .. 66

3.5.4 The GUIDE Proxy ... 66

3.5.5 The GUIDE Filter ... 67

3.5.6 The GUIDE Position Sensor ... 68

3.5.7 The GUIDE Cache .. 69

3.5.8 The GUIDE User Profile ... 69

3.5.9 The GUIDE Notification Dispatcher ... 70

 x

3.5.10 The GUIDE Path Finder .. 72

3.6 The GUIDE User Interface ... 74

3.7 Application Functionality: Some Scenarios .. 76

3.7.1 Overview ... 76

3.7.2 Accessing Context-Aware Information ... 76

3.7.3 Create a Tailored Tour of the City .. 78

3.7.4 Access Interactive Services ... 79

3.7.5 Send and Receive Messages .. 80

3.8 Conclusion .. 80

Chapter 4 ... 81

 Requirements and Design For A Context Service Based Architecture 81

4.1 Introduction ... 81

4.2 Analysis and Requirements ... 82

4.2.1 Overview ... 82

4.2.2 Requirements for a Context Service .. 82

4.2.2.1 Overview ... 82

4.2.2.2 Requirements for Mobile and Distributed Systems Support 83

R1: Supporting User and Device Mobility .. 83

R2: Support Persistence of Application and User State .. 83

R3: Support Flexible Interaction Models .. 84

R4: Security and Privacy of User Data .. 85

R5: Extensibility .. 85

R6: Modelling the Environment .. 86

R7: Management of Shared and Distributed Data ... 87

R8: Configuration and Interoperability ... 87

4.2.2.3 Requirements for Supporting Context-Awareness .. 88

R9: Context Capture .. 88

R10: Context Interpretation ... 89

R11: Infrastructure Transparency - Separation of Concerns ... 89

R12: Presentation, Adaptation and Persistence of Context ... 90

R13: Ability To Support Awareness ... 91

R14: Ability To Support Context Sharing Across Applications.. 92

R15: Specification and Representation of Context .. 93

4.2.2.4 Overall Analysis .. 94

4.3 A Context-Service Based Architecture ... 96

4.3.1 The Need For Context Services... 96

4.3.2 Introduction and Motivation .. 97

4.3.3 A Context-Service Based Architecture: Overall Approach ... 99

4.3.4 Context Services.. 100

4.3.4.1 Overview ... 100

 xi

4.3.4.2 Abstract Context Services ... 101

4.3.4.3 Context Translation Services ... 102

4.3.4.4 Bespoke Context Services ... 103

4.3.5 Context Service Provider .. 104

4.3.5.1 Context Manager ... 104

4.3.5.2 Event Manager .. 104

4.3.5.3 State Manager .. 105

4.3.6 Summary ... 105

Chapter 5 ... 107

 Architectural Design and Implementation of a Context Service Based Architecture

 ... 107

5.1 Introduction ... 107

5.2 Design and Implementation of a Context Service ... 108

5.2.1 Context Service Provider .. 108

5.2.1.1 Introduction ... 108

5.2.1.2 Accessing the Context Service Provider ... 108

5.2.2 Context Services.. 112

5.2.3 Context Discovery ... 115

5.2.3.1 Overview ... 115

5.2.3.2 Context Discovery: Searching ... 116

5.2.3.3 Context Discovery: Announcements ... 117

5.2.3.4 Determining an Appropriate Context Service ... 117

5.2.4 Specifying and Using Context ... 118

5.2.5 Context Translation ... 121

5.2.6 Communications ... 122

5.2.6.1 Introduction ... 122

5.2.6.2 Engineering Issues ... 122

5.3 Infrastructure in Use.. 124

5.3.1 Overview ... 124

5.3.2 The Ubichat Application ... 125

5.3.2.1 Introduction ... 125

5.3.2.2 Building the application .. 126

5.3.3 The Department‟s Public In/Out Board ... 128

5.3.3.1 Building the Application ... 128

5.3.4 Analysis ... 130

5.4 Summary ... 131

Chapter 6 ... 133

 Evaluation ... 133

6.1 Introduction and Methodology .. 133

6.2 Re-engineering the GUIDE application: GUIDE II .. 135

 xii

6.2.1 General Approach ... 135

6.2.2 Application Design: General Architecture .. 135

6.2.3 Generalising the Core Application Services .. 136

6.2.4 User Interface Extensions .. 138

6.2.5 Developing for mobile devices.. 139

6.2.5.1 Overview ... 139

6.2.5.2 Accessing The GUIDE Infrastructure using a PDA .. 140

6.2.5.3 Accessing the GUIDE Infrastructure using WAP ... 141

6.2.6 Summary ... 142

6.3 Test Scenarios ... 143

6.3.1 Scenario One: Supporting Applications in Changing Environments 143

6.3.1.1 Introduction and Motivation .. 143

6.3.1.2 Implementation .. 144

6.3.1.3 Analysis ... 147

6.3.2 Scenario Two: Maintaining a consistent environmental representation 147

6.3.2.1 Introduction and Motivation .. 147

6.3.2.2 Implementation .. 148

6.3.2.3 Analysis ... 150

6.3.3 Scenario Three: Supporting shared access to context ... 150

6.3.3.1 Introduction and Motivation .. 150

6.3.3.2 Implementation .. 151

6.3.3.3 Analysis .. 154

6.3.4 Scenario Four: Supporting disconnected operation ... 155

6.3.4.1 Introduction and Motivation .. 155

6.3.4.2 Implementation .. 156

6.3.4.3 Analysis ... 159

6.3.5 Scenario Five: Supporting Application Extensibility and Portability 160

6.3.5.1 Introduction and Motivation .. 160

6.3.5.2 Implementation .. 161

6.3.5.3 Analysis ... 163

6.3.6 Summary ... 164

6.4 Evaluation With Respect To Requirements .. 164

6.5 Summary ... 168

Chapter 7 ... 169

 Conclusions ... 169

7.1 Summary of the Thesis ... 169

7.2 Contributions of the Thesis ... 171

7.2.1 Major Contributions .. 171

7.2.1.1 A Novel Architecture Supporting Mobile Context-Aware Applications 171

7.2.1.2 Deployment of a Fully Operational City-Wide Wireless Infrastructure 173

 xiii

7.2.2 Other Significant Contributions .. 173

7.2.2.1 The Development of a Contextual Information Model ... 173

7.2.2.2 The Development of an Adaptive Context-Aware Navigation Aid 174

7.2.2.3 Adaptive Communications Protocol .. 174

7.2.2.4 User Field Trial Evaluation Results .. 174

7.3 Future Work .. 175

7.3.1 Unified Context Discovery Architecture ... 175

7.3.2 Standardised Context Specification and Modelling .. 176

7.3.3 User Controlled and Automatic Adaptation .. 176

7.3.4 Trust, Security and Privacy ... 177

7.3.5 Tool Support ... 179

7.4 Concluding remarks .. 179

References ... 181

Appendix A .. 205

 Creating a User Profile... 205

A.1 Introduction .. 205

A.2 The GUIDE User Preferences Wizard ... 205

Appendix B .. 209

 GUIDE Tags: Syntax and Semantics .. 209

B.1 Introduction .. 209

B.2 Syntax and Semantics ... 209

B.2.1 The INSERT Tag .. 211

B.2.2 INTEREST ... 212

B.2.3 METATAG .. 213

B.2.4 COMMENT .. 214

B.2.5 COLLABORATE ... 214

B.2.6 UPDATE .. 216

Appendix C .. 218

 Developing a Context-Sensitive City Tour ... 218

C.1 Introduction .. 218

Appendix D .. 223

 An XML User Profile ... 223

D.1 Introduction .. 223

D.2 A User Profile Specified in XML .. 224

 xiv

Figures

Figure 2.1 - The CODA state transition diagram ... 17

Figure 2.2 - The Rover architecture ... 19

Figure 2.3 - Broadcast Disks .. 22

Figure 2.4 - Tuple Space communications... 23

Figure 2.5 - Universal Plug and Play (UPnP) architecture [Microsoft,99] 26

Figure 2.6 - Jini lookup service interactions .. 27

Figure 2.7 - The Context Toolkit architecture ... 35

Figure 2.8 - The CIS service components .. 36

Figure 2.9 - The TEA layered architecture .. 37

Figure 2.10 - The PARCTAB system architecture .. 40

Figure 3.1 - The GUIDE end-system ... 50

Figure 3.2 - GUIDE system architecture and broadcast schedule 55

Figure 3.3 - The GUIDE broadcast schedule ... 56

Figure 3.4 - The GUIDE broadcast types .. 56

Figure 3.5 - The GUIDE information model ... 58

Figure 3.6 - The GuideLocation interface .. 59

Figure 3.7 - The GuideNavigationPoint interface .. 61

Figure 3.8 - The GuideNeighbour relationship .. 62

Figure 3.9 - The GuideContext interface ... 62

 xv

Figure 3.10 - Example use of GUIDETAGs ... 63

Figure 3.11 - The GUIDE application architecture.. 65

Figure 3.12 - Sample user trace ... 66

Figure 3.13 - The GuideProxy ... 67

Figure 3.14 - The GuidePosition interface ... 69

Figure 3.15 - The GuideUserProfile interface ... 70

Figure 3.16 - The GuideNotification interface... 72

Figure 3.17 - The GUIDE user interface.. 75

Figure 3.18 - Choosing visitor preferences .. 76

Figure 3.19 - Accessing information using GUIDE .. 77

Figure 3.20 - The presentation of navigation information ... 79

Figure 3.21 - GUIDE interactive services .. 79

Figure 3.22 - GUIDE messaging service ... 80

Figure 4.1 - Layer of abstraction .. 98

Figure 4.2 - Overall system architecture .. 99

Figure 4.3 - The components of a service based architecture 100

Figure 4.4 - Abstract context services .. 102

Figure 4.5 - Context translation services ... 103

Figure 4.6 - A prototype context service ... 103

Figure 5.1 – The Context registration process ... 109

Figure 5.2 - Session tracking using sequence numbers ... 110

Figure 5.3 - Discovering multiple services .. 110

Figure 5.4 - The context service provider (CSP) API .. 111

Figure 5.5 - The interface specification for a BaseContextService 112

Figure 5.6 - The context service API .. 114

Figure 5.7 - A sample XML specification for a context service 120

Figure 5.8 - A sample XML description for the GUIDE application 122

Figure 5.9 - The replaying of events following disconnected operation 124

Figure 5.10 - Ubichat interface for both Palm and Windows platforms 126

Figure 5.11 - Ubichat architectural components .. 127

Figure 5.12 - The format of a sms message ... 127

Figure 5.13 - Receiving a location update ... 128

Figure 5.14 - The In/Out board iButton reader .. 129

Figure 5.15 - The web interface to the department‟s In/Out application 129

 xvi

Figure 5.16 - The digital In/Out application architecture .. 130

Figure 5.17 - Shared access to context ... 131

Figure 6.1 - A summary of the GUIDE II system architecture 136

Figure 6.2 - Network connectivity at the user interface level 137

Figure 6.3 - User specification of context constraints in GUIDE II 138

Figure 6.4 - GUIDE II discovery packets .. 139

Figure 6.5 - GUIDE II geographic service selection ... 139

Figure 6.6 - A summary of the GUIDE II prototypes .. 140

Figure 6.7 - The GUIDE II interface for a Pocket PC PDA 141

Figure 6.8 - The GUIDE II WAP interface .. 142

Figure 6.9 - Introducing a new context service .. 144

Figure 6.10 - Processing a context discovery packet ... 145

Figure 6.11 - Context service evaluation ... 146

Figure 6.12 - Transparent context service re-binding .. 146

Figure 6.13 - Application configuration .. 148

Figure 6.14 - Saving application state .. 149

Figure 6.15 - Restoring application state ... 149

Figure 6.16 - User selects to remain anonymous to other GUIDE users 152

Figure 6.17 - GUIDE II interface presenting location awareness to the visitor......... 153

Figure 6.18 - Representing a cache miss at the application level 157

Figure 6.19 - Pushing an event to a user of the GUIDE II application 158

Figure 6.20 - Creating and using an instance of the Nibble location service 161

Figure 6.21 - Creating a Nibble location service interface .. 162

Figure 6.22 - Instantiating a context service .. 163

Figure A.1 - GUIDE Customisation wizard, step one ... 206

Figure A.2 - GUIDE Customisation wizard, step two ... 206

Figure A.3 - GUIDE Customisation wizard, step three ... 207

Figure A.4 - GUIDE Customisation wizard, step four .. 207

Figure A.5 – GUIDE Advanced Options ... 208

Figure B.1 - Creating a dynamic hypertext page ... 211

Figure B.2 - Personalising a tourist page ... 211

Figure B.3 - Inserting nearby places .. 212

Figure B.4 - Creating dynamic hypertext content .. 212

Figure B.5 – Updating the user profile .. 214

 xvii

Figure B.6 - Viewing comments left by other tourists ... 214

Figure B.7 - The use of the collaborate tag .. 215

Figure B.8 - Requesting a rating for a city attraction... 216

Figure B.9 - The GUIDE system detects that a user is lost 217

Figure B.10 - The GUIDE system presents a series of thumbnails 217

Figure B.11 - The GUIDE System updates the user interface 217

Figure C.1 - The tour creation process algorithm .. 220

Figure C.2 - GUIDE tour creation flowchart ... 222

 xviii

Tables

Table 1.2 - Taxonomy for Context [Dix,99b] .. 9

Table 2.1 - Classification of data delivery mechanisms .. 21

Table 2.2 - Key features of discovery mechanisms ... 29

Table 4.1 - Summary of context types and context use ... 91

Table 5.1 - A summary of context-aware applications .. 118

Table 6.1 - Context service state table ... 145

 1

Chapter 1

Introduction

1.1 Overview

Mobile computing currently plays an increasingly significant role in everyday life due

to advances in personal computing and communication technologies. Moreover, the

availability of low cost sensing technologies allows applications to monitor and use

situational information, or context, gathered from their operating environments, for

example, to aid a tourist navigating a city using location information captured from a

GPS [GPS,01] device. Applications that take into consideration environmental

factors such as location, identity and time are termed context-aware applications.

Existing context-aware applications are, in general, poorly suited to mobile or

distributed environments and often unable to tolerate a rapidly changing execution

environment, or take advantage of the availability of new services. Moreover,

existing approaches to developing context-aware applications are typically dependent

on the underlying infrastructure and thus applications are built with particular

environments (indoor or outdoor), application domains and infrastructures

(computational services or sensors) in mind [Dey,00c]. Consequently, this makes

applications less flexible, and difficult to extend or evolve their functionality should

the existence of new entities be detected. For example, an application utilising GPS

 2

for location awareness may have to be re-written in order to utilise an alternative

technology such as Active Badges [AT&T,00], [Want,92].

This thesis explores the pertinent issues relating to the development of context-aware

applications designed for use in dynamic environments and proposes to address the

salient challenges detailed above by adopting a context-service based approach. This

approach affords a layer of abstraction between applications, system components and

underlying technologies. Novel to this approach is that an application is able to

discover dynamically and select context services based on arbitrary contextual

information (e.g. user stipulated context constraints). Furthermore, decomposing

applications into independent services and embedding them in to the infrastructure

provides a foundation for other applications. As a result, applications may be smaller

in size, since core functionality resides within the infrastructure and can be shared,

instead of being single monolithic and self-contained entities. The decomposition of

applications into independent services is a classical solution to address the above

issues in distributed systems [Blair,97] and this thesis demonstrates how a number of

prototype context-aware applications benefit from the service based approach in terms

of flexibility. More specifically, the use of context services provides applications

with the necessary resources dynamically but are independent from any particular

implementation and, as a direct result, can be independently developed.

The remainder of this chapter provides an overview of the enabling technologies for

the field of mobile computing before describing in detail some of the relevant terms

used above. This chapter concludes by refining the aims and scope of the research and

summarises the contributions of this thesis.

1.2 Underlying Technologies

Developments in both the affordability and complexity of mobile computing devices

and wireless communications technologies within the consumer marketplace

engenders a higher degree of "anytime-anywhere" or ubiquitous access to distributed

computing systems, information repositories and remote services. This section

provides an outline of the enabling technologies for the contemporary mobile user.

Since the work described in this thesis is technology independent and assumes an

underlying infrastructure of highly portable multimedia devices, heterogeneous

 3

communications and sensing technologies, an in-depth study of enabling technologies

is not provided. More comprehensive surveys of the technologies described in this

section can be found elsewhere in [Cheverst,99b], [Finney,99] and [Jose,01a].

1.2.1 Personal Devices

Within the portable computing market there now exists a spectrum of devices ranging

from relatively large notebook computers, offering similar capabilities to that of their

desktop counterparts, to small and discreet wearable computers, with more limited

capabilities. The range of portable devices currently available include:

 Notebooks and Sub-notebooks Notebooks offer similar functionality to their

desktop equivalents, with many high-end ranges aimed as desktop

replacements. Sub-notebooks [Sony,01] offer increased portability with

negligible reduction in system performance. However, the smaller form factor

results in a reduction in screen real estate and expandability.

 Digital Tablets Digital tablets utilise a touch-sensitive screen and stylus for

user input [Fujitsu,01]. They offer notebook performance, with increased

screen real estate due to the omission of a keyboard, and can exploit standard

desktop operating systems and development environments.

 Handheld and Palm PCs Handheld PCs (H/PCs) are small and lightweight

portable devices available in a variety of form factors, each with different

displays, peripherals and operating systems. Communication is often

facilitated through IrDA [IrDA,98], and more recently, GSM [ECM,01],

[Scourias,00] wireless LAN and Bluetooth cards [Bluetooth,99b].

 Personal Digital Assistants (PDAs) PDAs were originally designed to be

very small, lightweight devices with simple applications such as calendar,

notebook, address book and limited expandability. However, the current

generation of PDAs, such as the Palm VII [Palm,00] or the Compaq iPAQ

[Compaq,01], offer a variety of applications and support IrDA, GSM,

WaveLAN and Bluetooth connectivity. Example applications include pocket

versions of web browsers, email clients and multimedia players.

 4

 Smart Phones A smart phone is a digital cellular phone that provides

additional services including email, Internet access and personal information

management (PIM), for example, the Nokia Communicator 9210 [Nokia,01].

The imminent deployment of 2.5 G and 3G broadband wireless networks will

add video playback capabilities to these devices.

 Wearable Computing Wearable computing explores the potential of

computer devices that are as unconsciously portable and personal as clothes or

jewellery. Wearable devices afford more natural forms of interfaces,

facilitating a richer variety of communications capabilities between humans

and computers. The goal is to support common forms of human expression

and leverage upon our implicit actions in the world, for example [Randell,00].

1.2.2 Communications

Wireless communications technologies available today can be categorised in the

following ways:

 Personal Area Network (PAN) A personal-area network, in relation to

computer networking, is the term used to represent the wireless

interconnection of personal electronic devices [Braley,00] such as notebooks,

handhelds, mobile phones using technologies such as Bluetooth [Haartsen,98].

 Local Area Network (LAN) A computer network that spans a relatively

small geographic area, for example, a single room, a building or group of

buildings.

 Metropolitan Area Network (MAN) Metropolitan-area networks are

usually characterised by very high-speed connections using fibre optical cable

or other digital media and are larger (geographically) than local-area networks,

for example, connecting computers across a campus or city area.

 Wide Area Network (WAN) A computer network that spans a relatively

large geographical area. Computers connected to a wide area network are

often connected through public networks, such as the telephone system,

although they can also be connected through leased lines or satellite systems.

 5

The range of available Local Area Networking technologies can be grouped into two

distinct classifications: infra-red (IR) and radio frequency (RF). Infra-red has become

ubiquitous within the home audio/video (AV) market since the 1980‟s. Most IrDA

implementations today are point-to-point (Direct IR), allowing bit rates of up to 4

Mbps over distances of approximately one metre. However, higher bit rate systems

(10 Mbps) providing omni-directional (Diffuse IR) coverage also exist, for example,

SpectrixLite [Spectrix,99]. IR systems are generally best suited to indoor

environments since the technology cannot easily penetrate objects such as walls or

even glass windows and is highly susceptible to ambient noise. Moreover, the point-

to-point nature of the technology makes it difficult to communicate with multiple

devices simultaneously and therefore establish ad hoc networks.

To address the problems of using IR in outdoor environments several RF technologies

have been developed, since these are more able to penetrate objects like office

partitions and walls. Today, a variety of commercial wireless LAN technologies are

available including Lucent Orinocco [Orinocco,01], AiroNet [Cisco,01], Netwave

[Xircom,01], Breezenet [Alvarion,01] and Nokia C111 [Nokia,00]. The bit rates

offered by these technologies range from 2 Mbps to more than 11 Mbps up to a range

of approximately 450 metres (omni-directional). These products offer either ISA,

PCMCIA (type II) or USB interfaces and are easily installed into any modern portable

end system. Wireless LANs, are designed primarily for enabling high bandwidth

reliable communications within domestic, office [Bahl,00] or outdoor environments

[Davies,98a], [Baker,96].

The latest RF technology to reach the consumer market is Bluetooth. This open

specification with over 2000 consortium members including companies such as IBM,

Motorola, Nokia, Intel and Microsoft has been designed to enable ad hoc wireless

networking amongst portable computing and telecommunications devices, for

example, PDAs, phones and notebooks. The current version specifies a data rate of 1

Mbps for ranges of up to 10 metres. A number of products are currently available

from manufacturers such as Ericsson [Ericsson,01], Nokia [Nokia,99], Digianswer

[Digianswer,00] and Palm [Palm,01]. The long term aim of the consortium is to have

Bluetooth transceivers costing under 1 USD and for them to become ubiquitous

amongst a wide range of electronic devices.

 6

1.3 Sensing Technologies

The existence of low cost sensing technologies that enable a system to monitor

aspects of its operating environment or its user, or more broadly, its situation provides

a basis for developing mobile applications that can adapt to changes in context.

1.3.1 Location

Between 1989 and 1993 the United States Department of Defense (DoD) deployed the

Global Positioning System (GPS), a satellite based navigation system funded and

controlled by the U.S DoD. GPS uses a constellation of satellites and one-way

communication as a means to determine user location based on a scheme using

relative distances [GPS,01]. This system provides any user equipped with a GPS

receiver with highly accurate positional information anywhere on earth. GPS

receivers vary in form factor from wristwatches [Casio,01] to handheld receivers

[Garmin,01] as well as solutions that allow connectivity with a PDA.

During a similar period (1989 to 1992) the Active Badge [Want,92] was developed at

Olivetti. The active badge periodically emits a unique code (beacon) and these are

received by a network of sensors placed around the building. A master station, polls

the sensors for badge „sightings‟, processes the data received from the sensors and

presents the information visually, enabling relatively accurate positional information

to be determined within an indoor environment. More recently, the ultrasonic

location system, or Active Bat [Harter,99] developed by Cambridge University

Computer Laboratory has made possible finer grained location within three

dimensions (3D). In the Bat system an ultrasound beacon is emitted from a

transmitter (known as a bat) which may be worn by a user or attached to objects (such

as printers, chairs or tables). The time the beacon takes to reach a network of ceiling

based receivers enables the distance between the bat and each receiver to be

calculated. An accurate 3D position of the bat can be determined if three of more

receivers are used and furthermore; if, for example, two or more bats are attached to

an object, such as an office chair, then a bat‟s orientation can also be calculated.

 7

1.3.2 Physical Environment

A range of relatively cheap devices capable of monitoring changes in the temperature

and humidity of the environment are available from companies such as Dallas

Semiconductors Corporation. For example, 1-Wire Weather Station [iButton,00b]

can be used to monitor basic facets of the environment. Point Six Incorporated

[Pointsix,01] and Kenelec [Kenelec,01] also offer products that are able to monitor

environmental facets including wind direction, temperature, humidity, barometric

pressure and rain level. Whilst individually these instruments may not provide a fully

comprehensive representation of the environment, the combination of these attributes

may be used to help applications adapt. For example, consider a user of an electronic

tour guide with access to some environmentally sensed information. The tourist

application may use information such as the time of day, the weather forecast and

current light level to determine the likelihood of there being a spectacular sunset that

day before directing the user to the best vantage point to view the sunset.

1.3.3 Physiological Environment

Monitoring the human body can also provide valuable information relating to the

current state of the operating environment. Considering examples such as airline

flight crew, train drivers or personnel operating heavy machinery, safe operation of

these systems are dependant upon their personnel and therefore, may benefit from

monitoring physiological factors that may be detrimental to their safe operation

[Allanson,00]. Computing systems that relate to, arise from, or deliberately influence

emotions or physiological facets are termed affective computing systems. MIT Media

Lab are currently engaged in a number of research projects [Affective,00] that study

information relating to the user‟s physical state or behaviour collected by a series of

sensors worn on the human body. Using these sensors researchers have been able to

gather information in a continuous way without interrupting users‟ normal work

patterns. Example applications include being able to detect driver stress [Healey,00],

the expression glasses [Scheirer,00], which allow a viewer to visualise expressions of

confusion made by the wearer of the glasses, and AffQuake [Affective,00], an attempt

to alter game play of ID Software‟s Quake II by monitoring signals from sensors

attached to the player‟s physical body.

 8

1.4 Introduction To Context

The preceding sections provided an overview of the underlying technologies for

mobile computing and technologies that enable facets of the environment to be sensed

or monitored. This information or context enables a system to have awareness of its

situation. Thus, context-aware applications can be defined as applications that have

the ability to interpret and use situational context to provide a basis for adaptive

behaviour based upon changes in context.

There have been numerous attempts to define context and context-awareness and

these have typically focussed almost exclusively on location. This class of application

is termed location-aware and can be considered a sub-class of the more general area

of context-aware applications. This section provides some background to the term

context and context-awareness and references previous work where appropriate.

The work on Active Maps [Schilit,94a] by Schillit et al at Xerox PARC first

introduced the concept of context-awareness. In their work they made use of location,

identities of nearby people and objects as well as the changes that occur to those

object over time as forms of context. Brown et al in their work on the Stick-e Note

Architecture [Brown,96] describe the different forms of context that can be used by

computers as: location, the presence of objects and people, temperature and blood

pressure or more generally as any environmental factor that might influence the

activities on a computer, provided it can be sensed. In Dey et al [Dey,00b], an

abstract definition is provided in relation to their work on the context toolkit,

“Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place or object that is considered relevant to

the interaction between a user and an application, including the user and

application themselves.“

Schmidt et al [Schmidt,98] in their work propose two general categories for context:

human factors and physical environment each with three further subcategories.

Human factors are structured into the following three subcategories:

 User: Is characterised by user habits, mental state or physiological

characteristics.

 9

 Social Environment: Is characterised by the proximity of other others

by their social relationships and collaborative tasks.

 Task: Define goal directed activities or the general goals of the user.

The physical environment is structured into the following three subcategories :

 Location: This could be absolute, for example a GPS coordinate, or

relative, for example inside a particular room.

 Infrastructure: Describe the surrounding computing and interaction

environment.

 Conditions: These are physical conditions of the environment such as

background noise, ambient light levels, brightness.

Schmidt et al also include time as orthogonal to these categories, since they argue that

knowledge of previous contexts may prove useful to an application.

Finally, Dix et al [Dix,99b] in their paper define a taxonomy for context in terms of

human-computer interaction and argue that a mobile device operates in a broad

context that includes the network and computational infrastructure, the broader

computational system, the application domain and the physical environment. The

taxonomy can be summarised as follows :

Context Relationship with Issues

Infrastructure

network bandwidth, and reliability,

display resolution

variability of service, user

awareness of service, liveness of

data

System

other devices, applications and

users

distributed applications, pace of

feedback and feed through,

emergent behaviour

Domain

application domain, style of use,

identification of user

situated interaction,

personalisation, task and work

studies, privacy

Physical

physical nature of device,

environment, location

nature of mobility, location

dependant information, use of

environment sensors

Table 1.2 - Taxonomy for Context [Dix,99b]

 10

Using this taxonomy it is possible to encapsulate all the aforementioned examples in

this chapter within one of the defined contexts. The particular context types relevant

to, and focussed on, in this thesis are :

 Identity - the identity of the user

 Spatial - location, orientation, velocity

 Temporal - time, date

 Environmental - light level, ambient noise, temperature, humidity

 Social - people in the vicinity

 Resource - nearby devices or services

 Resource Management - Resource usage or availability

 Goals / tasks - diary, document working on

 User History - previous user activity, interactions

1.5 Context-Awareness

Schilit and Theimer [Schilit,94b] defined context-aware as applications that are

informed about context, or applications that adapt themselves to context. Later, Hull

et al [Hull,97] and Pascoe et al [Pascoe,98a] define context-awareness more explicitly

to be the ability of computing devices to detect and sense, interpret and respond to

aspects of a user‟s local environment and computing devices themselves. More

recently, Dey et al [Dey,00b] defines context-awareness as;

“A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s task.”

The features of context-aware applications are generally categorised into one of the

following categories: presentation of information and services to a user, automatic

execution of a service, and, tagging of context to information for later retrieval

Presentation refers to applications that simply display contextual information or

services to users, for example, an application displaying GPS coordinates to its user as

she roams. Examples of context-aware applications that exhibit this behaviour include

CyberGuide [Long,96], GUIDE [Davies,98a], Stick-e Notes [Brown,96] and Active

Maps [Schilit,94]. However, Dey et al [Dey,00b] point out that it is often difficult to

 11

distinguish between presentation of information and the presentation of services. For

example, Schilit et al [Schilit,94a] explain that a list of printers organised by

proximity to a user is an example of providing information to a user, however, this

may depend upon its intended use. If a user merely looks at the list to become

familiar with the names of nearby printers then she is using the list as information.

However, if a user chooses to print to one of the printers in the list then she is using

the list as a set of nearby services. Information and services are therefore treated in a

similar manner to avoid attempting to make assumptions about the user‟s goal.

Auto execution includes context-triggered actions [Schilit,94b] and contextual

adaption [Pascoe,98] and is the ability to execute or modify a service automatically

based on the current context. Examples of context-aware applications that exhibit this

behaviour can be found in GUIDE [Davies,98a], a tourist application capable of

automatically displaying pages of tourist information as users approach particular

attractions [Cheverst,01c], and onCue [onCue,00] which adds context-aware services

to the standard Windows clipboard based on data copied to the clipboard.

Tagging of contextual information for later retrieval or contextual augmentation

[Pascoe,98a] is the ability to associate digital data with a user‟s context. The forget-

me-not [Lamming,94] project at Xerox Research Centre Europe (XRCE) (formerly

EuroPARC) is a good example of an application that takes advantage of this type of

behaviour. In forget-me-not Lamming et al use the idea that physical context can be a

powerful cue for recalling past events, for example, when a user is trying to recall a

particular document they were editing several weeks previously, they may not be able

to remember the precise name of the document, but are more likely to remember that

the document was presented at a particular meeting on a particular day with certain

colleagues present.

1.6 Research Aims and Methodology

This thesis examines the issues and implications associated with supporting the

development of mobile context-aware applications. More specifically, the thesis

describes an investigation into the use of a context service based approach to support

context-aware applications designed for use in mobile environments. The key

research aims are therefore to:

 12

 Investigate the practical issues relating to the development and deployment of

context-aware applications designed for use in mobile environments.

 Capture a general set of requirements for supporting the development of

context-aware applications.

 Develop, based on these requirements, a context service based architecture

capable of supporting mobile context-aware applications.

 Develop a prototype implementation of the key elements of this architecture.

 Evaluate the effectiveness of the context service. Moreover, to ascertain its

effectiveness and to examine the implications of this approach for a number of

prototype context-aware applications.

The service based architecture introduces a separation of concerns between

applications and the underlying infrastructure and one of the primary goals is to

provide a flexible mechanism for experimenting and prototyping context-aware

applications. In more detail, the hypothesis to be investigated is that a service based

approach will afford the following advantages:

 Flexibility: To enable applications to adapt to use across a wide range of

heterogeneous devices and execution environments independent of the

underlying infrastructure or physical environment.

 Evolution: To aid application evolution and extensibility by using a separation

of concerns between using context and the underlying infrastructure.

 Partial Connectivity: To enable context-aware applications to operate

successfully in mobile environments even during periods of disconnected

operation and to make use of discovery techniques to utilise new services.

 Context Awareness: To facilitate the awareness of users, devices and

services across a range of heterogeneous devices and environments and to

facilitate the sharing of context between application processes and instances.

Central to the research described in this thesis will be the implementation of a

prototype context-aware application, the Lancaster GUIDE system [GUIDE,99]. The

GUIDE system provides tourists to the city of Lancaster with an intelligent visitor

guide able to present tourist information and services based on contextual factors such

 13

as location, visitor interests, visitor history and a range of environmental factors. The

ideas presented in this thesis have been established through the design,

implementation and user evaluation of this system. Furthermore, this thesis

demonstrates how the GUIDE prototype benefits from the service based approach in

terms of operating in dynamic environments (flexibility) and through increased levels

of awareness. The development of the GUIDE prototypes afford the following other

significant contributions:

 A number of insights and detailed experiences relating to the development and

deployment of a real and fully operational context-aware application.

 The development of a contextual information model capable of supporting

geographic and context-sensitive information within a dynamic environment.

 An adaptive context-aware route guidance tool capable of providing

personalised tours based on a wide range of extensible contextual attributes.

 The development of an adaptive mechanism for data dissemination to support

a potentially large user community within close proximity.

 The initial results of a user field trial evaluation of the Lancaster GUIDE

system based on a number of mobile devices with varying capabilities.

In order to validate the research hypothesis detailed above, this thesis utilises the

Lancaster GUIDE system as the primary research vehicle. More precisely, an

evaluation of the GUIDE system consisting of a retrospective analysis of the design

process and a user evaluation field trial is used to determine how the GUIDE system

operates within a mobile and dynamically changing execution environment. This, in

addition to a critique of related work within the fields of mobile and context-aware

computing, provides a mechanism for establishing a set of requirements that are able

to form the basis for a context-service based architecture. The design and prototype

implementation of a service based approach is realised before being evaluated using a

modified version of the original GUIDE prototype which is able to make use of the

properties afforded by the context-service architecture. The architectural evaluation

then aims to validate the requirements and, more generally, the overall research aims

in order to determine whether or not a context-service based approach provides a

 14

flexible mechanism for developing, experimenting and prototyping context-aware

applications designed for use within dynamic environments.

1.7 Thesis Outline

The thesis develops in the following way. Chapter two surveys systems support for

mobility and the mechanisms currently adopted for supporting users within mobile

environments. Additionally, current approaches to developing context-aware

applications are detailed. The experiences of deploying a city-wide wireless network

and the design and implementation of a prototype mobile context-aware application

are described next in chapter three. In chapter four, these experiences are then

analysed to inform a service oriented approach to context-aware application design.

This analysis enables a set of requirements to be established for the design of an

architecture designed for use in mobile environments. The implementation of a

context service based architecture is detailed in chapter five. Chapter six revisits the

requirements presented in chapter four and describes a number of motivating

scenarios in order to evaluate the suitability of the service based approach. Chapter

seven presents the conclusions of this thesis and identifies some areas for future work.

In addition, appendix A describes the process involved in creating a user profile for

use with the GUIDE system. Appendix B details the syntax and semantics relating to

the GUIDE tags developed as part of the Lancaster GUIDE project. The development

of an adaptive context-aware route guidance tool capable of providing personalised

tours based on arbitrary contextual attributes is detailed in appendix C.

 15

Chapter 2

Related Work

2.1 Introduction

The previous chapter described how advances in portable devices, wireless

networking and sensing technologies have engendered the new paradigm of mobile

context-aware computing [Forman,94]. This chapter lays the groundwork for the

thesis and focuses on surveying systems support for mobility and the mechanisms

currently adopted for supporting users on the move. More specifically, this chapter

describes techniques for supporting user mobility, data dissemination of information

to mobile users and current work relating to dynamic discovery. In addition, current

approaches to developing context-aware applications are described. In particular, the

ways in which these applications have been developed to make use of a wide range of

contextual attributes are detailed. This chapter explores the specific problems which

currently need to be addressed and argues that effective support for context-aware

applications in mobile environments can only be achieved by building on the

foundation of existing mobile computing concepts and context-aware architectures.

 16

2.2 Supporting User Mobility

2.2.1 Introduction

Mobile computing research has evolved during the past decade from supporting

disconnected operation and access to remote file systems [Satyanarayanan,90] to,

more recently, multi-user, multi-device highly adaptive applications [HP,01],

[Brumitt,00a] requiring access to heterogeneous communications infrastructures and

sensing technologies.

In terms of supporting mobile users, research has typically focussed on two primary

types of mobility. The first concerns only the mobility of the user, who for example,

moves around an office building using fixed computing devices. An example of this is

described by Ward et al [Ward,97] as part of their work on Active Bat infrastructure.

The second involves the mobility of both user and computing device, for example, a

field engineer using a pen-tablet and working on the move [Brown,98b], [Davies,94].

Although this thesis is primarily concerned with supporting the latter, it is pertinent to

note the issues relating to both forms of mobility. The following sections detail the

current approaches to supporting mobile users, including supporting disconnected

operation, interaction within mobile environments and current resource discovery

techniques.

2.2.2 Disconnected Operation

2.2.2.1 Mobile File Systems

Much of the early work on facilitating mobile information access was based around

the notion of disconnected operation, that is, enabling existing applications to be used

on hosts that could become disconnected from their home network due to user

mobility, or network or server failures. This early research largely stemmed from

work on distributed UNIX file systems such as the Network File System (NFS) and

particularly the Andrew File System (AFS) [Satyanarayanan,85]. The initial aim of

AFS was to develop a scalable and secure mechanism that enabled large numbers of

users, spread across a number of remote hosts, to collaborate and share data.

Following on from this, the Coda file system [Satyanarayanan,90] strived to integrate

 17

the use of portable computers whilst remaining resilient to server and network

failures.

The key mechanisms for supporting disconnected operation in Coda include hoarding

(or user-assisted cache management), update logging and reintegration upon

reconnection. In essence, while the client is connected to the servers (in the hoarding

state, as shown in figure 2.1) the local cache is loaded with files that are prefetched

from the user‟s working set either periodically or at the user‟s request. The files

prefetched are determined by the user‟s hoard database file which contains file and

directory paths together with associated priorities.

If the client disconnects from the network, the client temporarily becomes a replica

site. The file system moves in to the emulating state where it optimistically allows

operations on the files in the cache to continue as if the servers were still available

[Kistler,91]. All the file operations are logged to a local update log.

When a server becomes available the client moves into the write disconnected state

[Mummert,95]. Operations are still logged as when “emulating”. However, the update

log is reintegrated to bring the server replicas up-to-date. By replicating at the file

level, Coda can transparently support pre-existing file-based applications.

Figure 2.1 - The CODA state transition diagram

2.2.2.2 Bayou

Bayou [Demers,94] uses weak consistency replication techniques to manage replicas

of shared calendars, electronic mail messages, databases, documents, and other

artefacts that are central to collaboration. Rather than providing transparent support

for an existing file system, Bayou focuses on supporting applications which are aware

 18

that they are reading weakly consistent data and that their write operations are likely

to conflict with others at some point. Bayou's design focuses on supporting

application-specific conflict resolution mechanisms to ensure that replicas move

towards eventual consistency.

A Bayou application‟s code and data are replicated at multiple clients and multiple

servers. Bayou servers provide synchronisation services to the clients, and then

synchronise among themselves. A client can synchronise with any server, with

updates propagating from one server to another until they reach a designated primary

server, at which time they become committed. Application developers may write

conflict resolution procedures to resolve conflicts such as writes to the same database

record. These procedures allow users to specify alternative updates in case primary

updates conflict. Developers may also supply functions to detect conflicts specific to a

particular application.

2.2.2.3 The Rover Toolkit

The Rover toolkit [Joseph,95] offers applications a uniform distributed object system

based on a client/server architecture. Rover provides mobile communication support

based on two concepts: Relocatable Dynamic Objects (RDOs) and Queued Remote

Procedure Call (QRPC). A relocatable dynamic object is an object with a well

defined interface that can be dynamically loaded into a client from a server (or vice

versa) to reduce client-server communication requirements. Queued remote

procedure call is a communication system that permits applications to continue to

make non-blocking remote procedure calls even when a host is disconnected.

Requests and responses are exchanged upon network reconnection. Updates to shared

objects are permitted even when disconnected and consistency is ensured using

application-level locking or by using application-specific algorithms to resolve

uncoordinated updates to objects [Joseph,95].

 19

Figure 2.2 - The Rover architecture

2.2.2.4 TACOMA and TACOMA Lite

The notion of mobile objects or, more specifically, mobile code [Jacobsen,99] is taken

further in the work on TACOMA [Johansen,97] and TACOMA Lite at the University

of Tromsø which adds software mobility to mobile, handheld devices. TACOMA is

based around the notion of folders and a meet operation. Folders enable an agent to

transfer data from one agent to another. A folder stores code or data that the agent

may access. A meet operation is called to enable a program to be started on a specific

host by a program executing on that same or even a remote host and allows agents to

communicate with each other. During meets agents are able to exchange folders. An

example application based on TACOMA is the Stormcast weather warning system,

which allows thin clients such as mobile phones to send short programs using SMS

(short message service) messages [GSM,00].

Jacobsen and Johansen in their paper on TACOMA Lite [Jacobsen,97] describe how

an infrastructure supporting mobile code is either stateful or stateless and the

distinction being whether or not the system pre-empts and saves the low level state of

a running process. A stateful system can pre-empt a running process, capture the

entire state, transfer this over the network and restart the process at the destination

host (analogous to process migration in distributed systems). Examples of stateful

mobile code systems include Voyager [Voyager,01] or Agent-Tcl [Gray,96]. A

stateless system does not capture the entire state of a running process but instead the

code explicitly saves necessary state needed before migrating to another host.

Furthermore, code is moved and activated at fixed, application specified entry-points,

for example, a specific function with the code. This produces less complex and more

portable systems but offers a trade-off against transparency.

 20

2.2.2.5 Summary

This section has described methods of supporting user mobility and in particular

facilitating information access during disconnected operation. The mobile file system

approaches, which play an important role in supporting legacy applications, were

presented first. These systems demonstrate effective file system use by weakening

file consistency and offering optimistic access to cached files. Early solutions have

often focussed on making user mobility transparent at the application layer and have

been designed to allow legacy (i.e. mobile unaware) applications to run without

modification in a mobile environment. In contrast, approaches like Bayou have been

designed with mobility as a central concern and have been specifically designed to

make potential inconsistencies visible to applications. The basic premise adopted by

the mobile agent approach is that the processing of data items can be migrated to

remote hosts and return only relevant data. Agent based techniques are similar to

deploying a proxy server between a client and server to select the data on behalf of the

client. However, unlike proxies which often reside at a fixed site, agents offer a more

dynamic approach and typically form a more general architecture, enabling agents to

dispatch and interact with other agents to accomplish their task.

2.2.3 Interaction Models

2.2.3.1 Overview

The mobile computing paradigm has posed a number of data management issues to

the research community, in particular the problems of managing location dependant

data, wireless data broadcast, disconnection management and energy efficient data

access. The following section describes current approaches to data dissemination

within mobile environments.

2.2.3.2 Traditional Data Dissemination Techniques

Franklin et al [Franklin,98] describe the following three main characteristics as useful

when comparing traditional data dissemination:

 Client Pull vs. Server Push: Client pull refers to information transfer initiated

by a client application, for example, a web browser making an explicit request

 21

for a web resource from a remote server. Server push is server initiated and

involves sending information to clients in advance of any explicit requests, for

example, web based services such as the PointCast network [Pointcast,96],

[Franklin,98] offering push based customised news alerts and information for

a variety of topics including weather, sport and finance.

 Periodic vs. Aperiodic: Aperiodic data delivery can be applied to both push

and pull. Aperiodic is analogous to event driven. For example, consider a

client application responsible for displaying stock prices to its user; the

transmission of information from the server to the client could be imitated by

the user making an explicit request (pull) or due to some data items being

updated (push). Periodic delivery is performed according to some specific

schedule, e.g. hourly.

 Unicast vs. 1-to-N: Unicast communication allows a data item to be

transferred from a server to a single client while 1-to-N communication allows

multiple clients to receive the same data item simultaneously.

Using the characteristics described above, it is possible to classify some of the

existing data delivery mechanisms accordingly.

 Client

Pull

Server

Push

Periodic Aperiodic Unicast 1-to-N

Request /

Response

yes yes yes yes

Polling yes yes yes yes

Publish /

subscribe

 yes yes yes yes

Broadcast

Disks

 yes yes yes

Table 2.1 - Classification of data delivery mechanisms

2.2.3.3 Alternative Approaches to Data Dissemination

The following section describes alternative approaches to the traditional data

dissemination techniques presented above.

Broadcast Disks

Broadcast Disks [Acharya,95a] developed at Brown University offers a periodic push

mechanism aimed at supporting 1-to-N communications over wireless links. In

 22

essence, the broadcast channel is regarded as a storage device and data is repeatedly

and cyclically transmitted across the channel. The broadcast disk technique has two

main components (as shown in figure 2.3). First, multiple broadcast programs (or

“disks”) with different latencies are superimposed on a single broadcast channel.

Secondly, the technique integrates the use of client storage resources for caching and

pre-fetching data that is delivered over the broadcast channel. These two mechanisms

allow their approach to provide increased availability for critical data and improved

performance for data access [Acharya,95b], [Imielinski,94].

Figure 2.3 - Broadcast Disks

Linda (L
2
imbo)

L
2
imbo is a tuple space based distributed platform for mobile environments based

around the original work on Linda [Friday,97] and the notion of tuples and tuple

spaces. Tuples are typed data structures each consisting of a collection of typed data

fields. Tuples exist within shared data objects called tuple spaces and tuples can be

deposited, read and removed from the tuple space. Changes to a tuple can be made by

withdrawing from the tuple space, amending and reinserting it, since tuples cannot be

altered while resident in the tuple space. Tuple spaces are shared between collections

of processes, all of which have access to the tuples within the tuple space. Friday et al

[Friday,98] argue that the tuple space paradigm offers a number of attractions for

mobile environments including the persistence of tuples, the guaranteed unique

withdrawal of tuples and the fact that communicating processes producing and

consuming tuples need not co-exist. This temporal decoupling allows processes to

interact via the tuple space without the need for explicit synchronisation. In addition,

communications are anonymous, that is, client and servers are unaware of each

other‟s identity, although it is possible to encapsulate identity information into tuples

to facilitate direct communications (as shown in figure 2.4). In [Wade,00] Wade

 23

highlights some drawbacks of this approach for synchronous groupware and

continuous media applications, primarily the slow enumeration of a tuple space, that

is, to discover all group state all tuples must be removed from the tuple space.

Furthermore, since there are no timeliness guarantees on the propagation of new

tuples or relating to the recovery of missed state, it is difficult to establish whether a

tuple exists within a given distributed tuple space since caches can be inconsistent.

Figure 2.4 - Tuple Space communications

Cambridge Event Architecture

Spiteri et al describe an event based approach to supporting distributed active systems

[Spiteri,98]. An event is defined as an asynchronous occurrence containing details of

an activity that has occurred within a distributed system and also represents an index

point into application sessions. The event based architecture described includes an

even repository for capturing and storing events. Furthermore, to simulate the replay

of activity sequences or for rebuilding lost state the architecture supports the injection

of events back into distributed application components. Event-based systems allow

any type of event or combination of events to be used to trigger further activity within

an application, for example, automatically switching the lights on as a room is

entered. The model is one of registration and notification and distributed clients may

register their interest with event sources, which respond asynchronously upon

detection of an event within the range of interest and notify interested parties. The

functionality offered by the event repository has been demonstrated through a number

of applications; monitoring and review of user activities, and tracking of user

movements to be able to replay them in a virtual reality environment.

2.2.3.4 Summary

This section has focussed on the issue of data management and it has been shown how

there are similarities between the event based systems and tuple space paradigm in

terms of interaction models. More specifically, the generation of events can be

 24

compared with the creation of tuples. However, application processes never directly

interact under the tuple space paradigm. A more in-depth survey of these techniques

can be found in [Wade,00] in which Wade argues that the inherent temporal and

spatial de-coupling offered by the tuple space paradigm has advantages for the

development of mobile adaptive applications.

2.2.4 Dynamic Discovery

2.2.4.1 Overview

The basic function of resource (or service) discovery is to allow users and applications

to deploy, discover and interact with the services provided by the devices and

software components within the network [Izadi,00a]. Although originally developed

for zero configuration networks (e.g. domestic or office environments) there has been

a recent trend towards using this technology for mobile and ubiquitous computing

environments. Within these domains scenarios generally centre around enabling users

to locate and utilise services within close proximity, such as entering a new building

and discovering nearby printers from their PDA [Edwards,99].

A number of discovery mechanisms have recently emerged aimed at addressing the

goal of simple, seamless and scalable device inter-operability. Examples include

Microsoft‟s Universal Plug and Play (UPnP) [UPnP,00], Sun‟s Jini [Edwards,99] and

the Service Location Protocol (SLP) [Guttman,99b]. All these technologies aim to

provide the following basic capabilities:

 Announcement: Ability to announce its presence to the network.

 Discovery: Automatic discovery of nearby devices.

 Description: Ability to describe its capabilities (services) or query the

capabilities of other devices.

 Configuration: Self configuration without administrative or user

intervention.

 Interoperability: Seamless inter-operability with other devices.

The following section looks at each of the current discovery mechanisms in turn.

 25

2.2.4.2 Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) [UPnP,00] aims to simplify the transparent

interconnection of intelligent appliances, wireless devices and services by leveraging

upon Internet technology and can be regarded, from a functionality point of view, as

an extension of the concept of Plug and Play to support pervasive peer-to-peer

network connectivity. In essence, the UPnP communication model is based around

user controlled points, controlled devices and services (shown in figure 2.5). An

entity, known as a Bridge, is used for representing devices that do not support the

native UPnP controlled device functionality. The controlled device acts as a container

for services and, possibly, other devices and typically represents some physical

device, for example a VCR. A device may contain any number of services such as

Play, Rewind, etc.

UPnP discovery is based on the Simple Service Discovery Protocol (SSDP)

[Goland,99], a protocol designed with the goal of allowing devices to discover each

other‟s presence within a network without configuration, management or

administration. SSDP is based on HTTP over both unicast (HTTPU) and multicast

(HTTPMU) UDP. When added to a network, a control point searches for devices and

uses unique ids to identify them. As soon as a device is added to a network it

advertises its services and periodically refreshes these advertisements. These

advertisements contain a service type and a URL for the service being advertised.

Devices must cancel advertisements when removed from the network and must

respond to search requests from control points. All advertisements and search requests

are based on IP multicast and search response message are unicast UDP which must

contain a URI that identifies the resource (e.g. "cs:printer") and a URL to an XML file

that provides a description of the announcing device [Goland,00]. This description

includes, amongst other things, a URL that can be used to access the user interface for

the device and a list of state variables associated with the service. For example, an

object representing a printer might have a variable auto-feed with possible values

on and off.

 26

Figure 2.5 - Universal Plug and Play (UPnP) architecture [Microsoft,99]

2.2.4.3 Jini

The Jini technology from Sun Microsystems [Sun,99b], [Sun,99c] allows any network

made up of services (printers, databases) and clients of those services to be managed

without administration. Jini relies on the concept of a federation which is a collection

of autonomous devices that can be made aware of each other‟s presence in order to

cooperate with each other. To facilitate this, Jini includes a number of lookup

services that maintain state information relating to devices available on the network.

Before a device can enter into a federation it must first discover a lookup service.

Once a lookup service is located, a device can tell the service about itself (i.e. register)

or the device can query service information relating to other devices in the federation.

During the registering process attributes that are used to describe the service offered

(name/value pairs) can be set which enable queries from other devices to be matched

and following this devices upload Java byte code to the lookup service. This code acts

as a "proxy object" that can be used to contact an interface on the device and invoke

methods. This enables the querying of a device to automatically download a proxy

and call methods, normally made using Java Remote Method Invocation (RMI),

inside the device. The Jini lookup service can also be used by clients wishing to use a

service. This involves searching the lookup service by specifying either its type, a

unique identifier of the service or the attributes. The returned value is the proxy

object from the service item and this contains methods to enable interaction between

the service provider and the client. Once a proxy has been downloaded a client may

communicate directly with the service as shown in figure 2.6 [Waldo,99].

 27

Service Provider

Service Object

Service Attributes

Lookup Service

Service Object

Service Attributes

Client

Service Object

ii). Lookup. Lookup service queried

and matching service copied to Client
i). Join. Service Object and Attributes

Copied to Lookup Service

iii). Communicate. Direct interatcion between client

and service provider

Figure 2.6 - Jini lookup service interactions

A key feature of Jini is that it is independent of the underlying transport protocol

unlike UPnP and SLP which are based around TCP/IP. In addition, Jini supports the

notion of events, so for example a digital camera could specify an interest in available

printing services and once such a service becomes available a notification can be sent

to the digital camera.

Jini lookup services make use of registration leases with expiry information to ensure

that services have an accurate representation of the available devices. Devices are

required to renew their leases periodically for the lookup services to maintain their

registration information.

2.2.4.4 Service Location Protocol

The Service Location Protocol (SLP) [Guttman,99b] is a discovery mechanism aimed

at enterprise networks with multiple shared services. SLP offers two alternative

operating modes based around a directory agent, which is a repository for the

available services.

The first operating mode involves the use of a directory agent by a user agent which

allows a client to interact with it to discover services. More specifically, when a client

generates a user agent this in turn generates a multicast request to obtain the location

of a directory agent. The directory agent is also capable of periodically advertising its

presence to user agents. Service agents acting on behalf of services wishing to

advertise their presence discover directory agents in the same way as user agents.

When present, a service agent registers with a directory agent and this registration is

updated periodically.

 28

The second mode is used when a user agent cannot locate a directory agent. In this

scenario a user agent requests services directly by making explicit requests destined

for a specific multicast group. Furthermore, user agents multicast service requests to a

predefined specific multicast address which service agents respond to using unicast.

2.2.4.5 Summary

Although resource discovery is a key requirement for highly mobile environments,

current discovery mechanisms generally assume fixed, high speed, reliable networks

and, in addition, target home or corporate environments, an assumption explicitly

presented in the Jini and SLP specifications. For use in mobile environments, issues

such as interoperability and scalability alone currently pose significant challenges for

application developers. Moreover, the presence of a diverse set of service discovery

technologies available raises the issue of how to deal with the disparate range of

device representations and interaction models. For example, UPnP defines XML

schemes to represent devices, SLP uses URL syntax and Jini serialised Java objects.

Clearly, applications capable of interacting with more than one of these discovery

mechanisms simultaneously poses a great challenge for the application developer,

particularly if the mobile device in question has limited resources, such as a PDA.

Furthermore, in terms of scalability, as the number of clients and services within an

environment increase, so the burden due to dynamic service discovery and interaction

increases. In an analysis of current discovery mechanisms, Friday et al [Friday,01a]

describe how a single client joining a network consisting of a single root device with a

single sub-device and service type results in a total of 54 messages (datagrams) being

generated. Thus, as the number of clients and services increase, low-bandwidth

networks may become saturated with service announcement traffic. Table 2.2

summarise the key features of these architectures and a more in-depth comparison of

these can be found in [Bettstetter,00], [Friday,01a] and [Jose,01a].

 29

Feature UPnP Jini SLP

Developer Microsoft and

various

Sun

Microsystems

IETF

Network

Transport

TCP/IP independent TCP/IP

Programming

Language

independent Java independent

OS and Platform independent independent dependent

Code Mobility no yes no

Leasing Concept yes yes yes

Security IP dependent Java based IP dependant

Table 2.2 - Key features of discovery mechanisms

2.2.5 Analysis of Supporting User Mobility

The work described so far has introduced a number of different mechanisms for

enabling users to achieve consistent levels of service despite user mobility. Mobile

file systems such as CODA allow legacy applications to be supported although they

do not adequately provide information to higher layers to allow applications to adapt

to changes in user mobility. Using this additional information, mobile applications

can apply a number of techniques to efficiently support mobility. Techniques such as

filtering, agent based approaches like TACOMA, or service migration as found in

Rover may all be used to help reduce bandwidth requirements. Data dissemination

techniques such as Broadcast Disks and event based approaches such as the

Cambridge Event Architecture may also be used to provide energy efficient and

timely access to information respectively. However, there is a need for flexibility in

terms of the data distribution techniques offered to developers of mobile applications,

a factor presented by Schilit in his thesis [Schilit,95]. More recently, research has

focussed on methods of supporting dynamic discovery of devices or services,

although there are currently no unified or lightweight discovery solutions suitable for

mobile environments. Furthermore, as shown in the next section, support for the

discovery of more abstract services other than physical devices is not yet provided, for

example, a user being notified that a work colleague has entered their locality.

 30

2.3 Context-Awareness

2.3.1 Introduction

In order to achieve effective operation in mobile environments, mobile applications

must adapt in response to changes in their environment [Davies,94], [Katz,94]. These

adaptive applications in general require information relating to changes in their

surrounding environment, in particular their network quality of service (QoS). To

achieve this, aspects of the environment must be sensed or discovered and

disseminated among interested parties accordingly. Noble et al [Noble,97] describe a

taxonomy for adaptation which ranges from placing the responsibility of dealing with

adaptation on an individual‟s application (laissez-faire) to placing the responsibility

for adaptation on the system (application transparent). Between these lies

application-aware adaptation which is based on a collaborative partnership between

application and the underlying system. The latter approach allows applications to

determine how and when best to adapt, but preserves the ability of the system to

monitor resources and enforce allocation decisions. Satyanarayanan et al

[Satyanarayanan,90] uses Coda as a research vehicle into application-transparency

adaptation and more recently have focused on application-aware adaptation with the

Odyssey platform [Noble,99]. Adaptive applications have traditionally focused on the

monitoring of the network QoS as means for triggering adaptation. The following

section describes work in the field of context-aware application design, a field which

is more general than mobile adaptive computing since all aspects of the operating

environment may be monitored and used in order to trigger application adaptation.

Schilit [Schilit,94b] in his work on the PARCTAB system at Xerox PARC [Want,95]

describes the context-aware life cycle as context discovery (content capture or

sensing), context selection (interpretation) and context use. This broad structure will

be used to analyse related work in the area of context-aware computing.

2.3.2 Context Capture

2.3.2.1 Introduction

Brown et al [Brown,00b] describe several mechanisms for context capture. Firstly,

context can be captured from the environment through the use of sensors such as GPS

 31

receivers [Dana,98] or via the state of a user‟s equipment, such as battery life. In

addition, existing information or applications such as diaries, „to do„ lists or weather

services can be used to obtain context. Context may also be captured from user and

task models, for example, the fact that a user is vegetarian could be considered

valuable context when specifying the task “Where is the nearest café?” Context may

also be gained explicitly by the user specifying their current interests or needs

[Pascoe,98b], for example, “I am hungry and tired”. Finally, context can also

combine aspects of the physical and virtual worlds, for example in the Lancaster

GUIDE system described in chapter three, users are able to request information

relating to their location virtually within the information space while at the same time

having the information displayed and tailored to aspects of the physical world.

2.3.2.2 Active Maps

Work on the Active Badge system [Want,92] at Cambridge AT&T Labs (formerly

Olivetti Research Laboratory (ORL)) formed the starting point for much of the work

on context-aware computing. Active Badges are small devices worn by personnel that

transmit a unique identifier every 10 seconds using infra-red. A network of ceiling

based sensors receive these transmissions and are able to determine the location of the

badge, and therefore its wearer within the building. Active Badges have been

successfully deployed within a number of academic institutions and applications

based on this technology include Active Map [Want,92] and FLUMP (The FLexible

Ubiquitous Monitor Project) [Finney,96a]. The Active Map annotates graphical floor

plans of the AT&T labs with location information gathered from people and objects,

such as printers, allowing users to determine the required service. FLUMP, based at

Lancaster University, enables useful information (such as e-mail and diary

information) to follow people around the Computing department using a series of wall

mounted monitors distributed throughout the building. These monitors make use of

WWW technologies to render information and the migration of information between

monitors is triggered by Active Badge sightings. Although their relative small size

and weight make the Active Badges convenient to wear, they do not offer the fine-

grained 3D location and orientation accuracy required to track people with precision

within indoor environments for applications such as the intelligent videophone

system. This system utilises a number of cameras placed around a room and

 32

continuously selects a camera view with which the user‟s face can be seen. This

allows a user to wander freely around an office room during a videophone

conversation. To achieve this higher level of positional accuracy, Harter et al

[Harter,99] have deployed a low-power, wireless and relatively inexpensive ultra-

sonic location system known as Active Bats (bat). This approach uses a series of

ceiling based transceivers to monitor people and objects within the building wearing a

Bat. The use of Active Bats overcomes some of the limitations of the preceding

Active Badge infrastructure and offers finer grained location in 3 dimensions.

However, due to the infrastructure requirements to gain this information (deployment

of a large number of ceiling based transceivers) it is unlikely to be adopted as the

ubiquitous indoor location technology. Consequently, a similar although more

lightweight approach to fine grained 3D positioning within indoor environments is

currently the focus of research by Randell et al [Randell,00] as part of their work on

the CyberJacket.

2.3.2.3 Cyberguide

Another example of a location based context aware application is Cyberguide

[Long,96], an indoor mobile tour guide for visitors of the GVU (Graphics,

Visualisation and Usability) Centre at Georgia Tech. Visitors carrying Apple

MessagePads have information presented to them based on location and orientation

information gathered from a series of ceiling based Infra-red sensors. The original

Cyberguide implementation suffered from a number of restrictions which included a

tight coupling of the positional information and communications infrastructure and

the use of static maps of the environment. Indeed, the ceiling based sensors used to

provide location and orientation information were also employed to provide the

communications ability so changes in sensor positions involved parts of the

application to be re-written as well as the reloading of the new information model. A

further limitation is the use of a hard wired infrared positioning system based around a

series of remote controls suspended from the ceiling, each with a different button

taped down to provide the unique infra red beacon. The use of static configurations

therefore has a detrimental affect on the evolution and extensibility of the Cyberguide

application [Dey,01].

 33

2.3.2.4 Teleporting

The Teleporting System developed at AT&T Labs is a tool for experiencing mobile X

sessions. Teleporting [Bennett,94] enables the mobility of X-windows user interfaces

by allowing them to relocate between displays. Teleporting makes use of location,

identity and activity to enable a user to materialise and de-materialise their desktop to

and from a display using simple commands. However, teleporting relies on the X-

windows windowing paradigm although some of the mechanisms adopted in their

approach could be applied to other applications. An example of this is the use of a

proxy X server which is used to relay communication between users and real displays

(servers). When display relocation is required, the proxy server transparently

manages the handover of the user interface between displays. The use of transparent

proxies is a mechanism to support user mobility (disconnection) adopted by other

work such as Top Gun Wingman [Fox,98].

2.3.2.5 CyberDesk

The CyberDesk architecture was built to automatically integrate web-based services

based on context relating to user activity. In more detail, the CyberDesk architecture

uses contextual information to dynamically integrate software modules, for example,

a user highlighting a particular appointment with a work colleague from their diary

will have a number of services suggested to them. The system is able to interpret the

appointment and extract the relevant context in order to provide context-aware

services, for example, offering to search for the selected text using a web-based search

engine, look up the name in their address book or to send an email to that person.

However, the system is very limited in the types of context it can handle and does not

support multiple simultaneous applications. Finally, the context used by the system is

not stored nor is it queryable. These shortfalls were identified when Dey et al used

their approach to build an intelligent environment application [Dey,97] and some of

these limitations were later addressed as work on the Context Toolkit described in

section 2.3.3.2.

2.3.2.6 Summary

Current approaches to context-sensing centre around the use of location as the

primary context type. Furthermore, mechanisms for managing this information are

 34

simple and typically designed for particular location technologies and with specific

target applications in mind [Bennett,97]. This tendency for utilising context in such a

bespoke manner makes application evolution difficult and does not afford a trivial

mechanism for transferring a system to an alternative environment [Long,96],

[Dey,98]. More general approaches to the representation and use of context are

required to enable application developers to offer re-usable components for use within

future mobile context-aware applications.

2.3.3 Context Selection

2.3.3.1 Introduction

The following sections describe previous work relating to context selection, which

include mechanisms for notification of contextual updates, context storage and

context interpretation where interpretation refers to the transformation of one or more

types of context into another type of context.

2.3.3.2 Context Toolkit

The Context Toolkit [Dey,99b] developed at Georgia Tech‟s GVU aims to separate

the context acquisition process from the delivery and use of context. The Context

Toolkit supports the acquisition and delivery of context using three types of

abstractions: widgets, servers, and interpreters, as shown in figure 2.7.

 Context widgets are software components that provide applications with

access to context sensed from their operating environment. They free

applications from the context acquisition process by hiding the complexity of

the sensors from applications. Each widget encapsulates state and a set of

event callbacks. The state is comprised of contextual information that

applications can exploit via polling or subscribing. Callbacks represent the

types of events that the widget can use to notify subscribing applications. The

widget also maintains contextual state allowing other components to retrieve

historical context information.

 Context servers are used to collect the entire context about a particular entity,

such as a person. The context server is responsible for subscribing to every

 35

widget of interest and acts as a proxy to the application, collecting information

for that particularly entity. The context server can be seen as a compound

widget. As such, it has attributes and callbacks, it can be subscribed to and

polled, and its history can be retrieved.

 Context interpreters are responsible for implementing the interpretation of

context information. They transform between different representation formats

or merge different context information to provide new representations.

Figure 2.7 - The Context Toolkit architecture

Within this model, context widgets derive fine-grained context information, which

may be interpreted and presented to context servers. For applications to receive

notifications about a particular type of context such as the activity within a specific

location, they would have to subscribe for events from the actual context widget.

However, if events about particular system entities, such as users, are required then

the application must register for notifications with the context server. Although the

Context Toolkit includes mechanisms for enabling applications to register for call

backs there is no inherent support for user mobility. Consequently, should an

application register for updates (events) for a particular type of context and then

become disconnected from the network due to host mobility, there are no mechanisms

for synchronisation of state once the network connected is re-established.

2.3.3.3 Context Information Service

The Context Information Service (CIS) [Pascoe,98b] is a further architecture which

supports context-aware applications through the maintenance of an object-oriented

view of the world comprised of artefacts, states, sensors, synthesizers, monitors and

catalogs. Artefacts have a name, type and a set of contextual states associated with

 36

them. For example, the world may contain a person artefact named „Keith‟ with a

location state. CIS clients can access the state of any artefact in the world (e.g.

Keith‟s location). The CIS also consists of a state catalog and an artefact catalog

which provide templates for creating new artefacts and interactions between them.

Sensor arrays are used to collect contextual data (e.g. location from a GPS device) and

synthesizers are used to synthesize or aggregate contextual data from other artefact

states, for example synthesizing a sunset from a location, weather and a time state).

Contextual data from sensors or synthesizers is directed to appropriate artefacts under

the control of a monitor, which provides strict quality of service guarantees, for

example, location must be accurate to within 50 metres.

The contextual model constructed using these components is then made accessible

through four CIS service components (shown in figure 2.8), which act as the interface

through which any client program or user may construct, view, or manipulate a shared

contextual model of the world. This approach is currently work in progress and no

implementation details are currently available.

Figure 2.8 - The CIS service components

2.3.3.4 TEA

The Technology for Enabling Awareness (TEA) [Schmidt,98b] approach to

supporting context awareness involves transforming sensor readings into context

profiles, for example, transforming sensors values such as light = 90% and noise =

75% into context such as “in a meeting”. This is achieved through a four layer

architecture and primarily through the use of sensors, cues and context profiles.

Output from sensors is regarded as low level and therefore requires transformations or

 37

filters to be applied before being of any significant value to applications. For example,

the output from a light sensor could be replaced with mean and variance values.

Filters and transformation of raw sensor data are examples of cues (layer 2) and these

can be used to give a better interpretation of the data. The third layer involves the

mapping of cues to context profiles specified by the user and this forms the focus of

the TEA approach. This mapping layer must be able to transparently adjust itself to

contexts that the user will visit and furthermore, this will enable the fourth layer to

utilise the context information in order to adapt the behaviour of applications or

devices. This architecture was used to determine the state of a mobile phone in order

to automatically configure its profile. For example, a user walking in an outdoor

environment will have the cell phone configured so that the volume is set to

maximum and the vibrating alert turned on. However, if a user is thought to be in a

meeting then a silent mode may be selected which re-directs all phone calls to voice

mail. The TEA layered architecture is summarised in figure 2.9.

Figure 2.9 - The TEA layered architecture

2.3.3.5 Audio Aura

The goals of Audio Aura system [Mynatt,98] are to provide serendipitous information

related to people‟s physical actions in the work place via background auditory cues

and to explore the use of audio to connect a person‟s activities in the physical world

with information gathered from the virtual world. The system is based around a

centralised server and relatively thin clients with most of the computation occurring

on the server. The server maintains a history by storing context (location, identity and

time) gathered from the environment, primarily through the use of Active Badges

[AT&T,00]. The server also provides a notification mechanism which allows clients

to stipulate their notification constraints although this requires advance knowledge of

how the context is stored on the server, therefore reducing the separation between

context acquisition and context use.

 38

2.3.3.6 AROMA

The AROMA project attempts to provide peripheral awareness of geographically

dispersed people who would like to stay in touch [Pederson,97], for example,

allowing a person about to make a phone call to be able to see what is happening at

the callee‟s site before making the phone call. AROMA allows auditory and visual

data captured in a colleague‟s space to be delivered to another colleague‟s space and

rendered in a variety of ways. The aim of AROMA is to explore the use of abstract

representations of captured data as presence indicators. Its object-oriented

architecture uses capture objects to encapsulate sensors and abstractor objects to

extract features. Synthesizers take abstract awareness information and display it.

2.3.3.7 Summary

A tight coupling generally exists between the sensing and use of context

[Brown,96][Finney,96b], although in the original call forwarding Active Badge

application servers were placed between the application and the sensors to abstract the

details of the sensing from the application. Furthermore, sensed context is generally

low level, such as longitudinal or latitudinal coordinates provided by a GPS compass,

and context interpretation may be required in order to provide useful information to

applications. The work presented in the previous section describes current approaches

to context selection and, in particular, methods of abstracting over the sensed context.

Dey et al describe an architecture to support the building, execution and evolution of

context-aware applications via the use of context abstraction. In contrast to the

approach adopted by Dey et al, the Context Information Service (CIS) promotes a

tight coupling between the application and the underlying sensors, taking an

application-dependant approach to application development. Typically, the systems

discussed thus far are limited to a portion of the context selection process, that is,

either including mechanisms for notification of contextual updates or techniques for

context abstraction and all omit implicit support for user mobility.

 39

2.3.4 Using Context

2.3.4.1 Stick-E Notes

Brown [Brown,96] in his work on the Stick-e Notes framework proposes an

architecture for supporting application designers in using context to perform context-

aware behaviour with the goal of enabling non-programmers to author context-aware

services. This architecture is based around the stick-e note metaphor which is the

electronic version of a Post-It note and represents the association of context to objects.

Stick-e notes can be attached to a range of contexts such as specific locations, people

or objects and may also contain actions or rules that specify the type of behaviour

which should take place when a particular context is entered. For example, attaching

a stick-e note to a particular location such as a library and to a particular person can be

used to trigger an event should that context be entered, i.e. user meeting that person in

the library. A tour guide application was developed to demonstrate their approach

and some of the ideas presented in this research formed the basis for work on the

Lancaster GUIDE system described in chapter three.

2.3.4.2 PARCTAB and Active Maps

The PARCTAB system developed at the Computer Science Lab (CSL) at Xerox PARC

[Want,95] integrates palm-sized mobile computers into an office environment

(network) and served as a testbed for research in to the ubiquitous computing vision

first described by Weiser [Weiser,91]. The Tab is a personal digital assistant (PDA)

that communicates via infrared (IR) to a network of IR transceivers. The system is

designed for indoor use in such a way that each room serves as a communication cell.

As the tabs move from cell to cell (room to room) the underlying infrastructure

provides an uninterrupted and reliable service. A key feature of the approach adopted

by Schilit et al [Schilit,94a] is that most of the applications run on remote hosts and

this places a high dependency on reliable communications throughout the IR network.

Within the PARCTAB system there exists three types of software component:

gateways, agents, and applications. Gateways are responsible for sending and

receiving data packets using IR signals. Each tab is represented by an agent which is

responsible for tracking its location and also provides location independent remote

procedure calls [Want,95]. Applications are built using a library of widgets designed

 40

to accommodate the low IR-communication bandwidth and small display area of the

tab. The PARCTAB system architecture is summarized in figure 2.10.

Schilit in his thesis [Schilit,95] presents an architecture to support the design of

mobile context-aware applications. More specifically, in his research the architecture

is based around three main components: device agents, user agents and active maps.

Device Agents maintain the status and capabilities of devices, whilst user agents

maintain user preferences and active maps maintain location information of devices

and users.

Figure 2.10 - The PARCTAB system architecture

2.3.4.3 Cooltown

Cooltown is an infrastructure to support “Web presence” for people, places and things

[Kindberg,00], [HP,01] by associating each real world object with a web resource

[Caswell,00]. Each web page is used to store information about the real-world object

it represents and is automatically correlated with their physical presence. Cooltown

primarily supports the display of context and services to its users, for example a user

carrying a PDA walking through a city electronically picks up URLs for pages about

the city itself and the places travelled through (e.g. a railway station, a shopping

district, a café) and these are presented as web links.

The main component of the Cooltown architecture is a place manager that maintains a

directory with the description of the people and objects physically present in that

place. As people and mobile devices move, the state of the directory is updated to

represent the current state of the place at any point in time.

 41

Cooltown offers a discovery mechanism and abstraction components such as URLs

for sensed information and web pages for real-world objects;F however their approach

does not seem to offer support for low-level sensed information or support for other

features of context-aware applications such as automatic execution.

2.3.4.4 EasyLiving

The EasyLiving project [Brummitt,00a] developed at Microsoft Research focuses on

the development of an architecture and supporting technologies for intelligent

environments and in particular the support of a coherent user experience via the

aggregation of a diverse set of devices. The EasyLiving architecture encapsulates

hardware device control, internal device logic and user interface presentation as

service abstractions. These abstract service descriptions register with a lookup service

and allow each service to expose a set of attributes so that other services may interact

with them automatically. A major focus of the work is aimed at geometric world

modelling [Brummitt,00b] and supporting geometric knowledge, that is, representing

knowledge about the physical relationships between people, devices, places and

things that can be used to dynamically assemble a set of UI devices for a particular

interaction. Brummitt et al’s approach uses software components to decouple the

sensors from the application, and to provide transparent communications and

discovery mechanisms to enable the availability of components to multiple

applications. Communication between components occurs via an asynchronous

message passing and an XML-based message protocol (SOAP [Box,00]). As part of

the EasyLiving project an intelligent space has been created to demonstrate a number

of applications, which include the teleporting of desktops among available displays,

personalised media services which allow audio or video playback across a number of

devices (such as CD, MP3 , DVD or Videotape) based on user location and interests

[Meyers,00], and dynamic room controllers that provide context sensitive access to

services based on co-location [Shafer,00]. EasyLiving includes mechanisms for

discovery but does not provide explicit support for context interpretation or context

storage for later retrieval.

 42

2.3.4.5 Forget-Me-Not and Satchel

The work on Forget-Me-Not and the memory prosthesis [Lamming,94] at Xerox

Research Centre Europe (formerly EuroPARC) aims to help with everyday problems

such as finding documents and remembering names and addresses. Forget-Me-Not is

an example of a context-aware retrieval system based on user activity (or context)

such as phone calls made, emails received and rooms visited. As a user interacts with

devices information such as the device name, location, salient details relating to

operations performed and a timestamp are logged into a personal (private) biography.

Similarly, the system logs the contextual features of encounters with other users, for

example “John met with Sam in the reception”. The biography therefore contains a

sequence of encounters which may be browsed or filtered based on particular entities

or activities and displayed to a user‟s PARCTAB screen [Schilit,95]. For example, a

user could manipulate their PARCTAB biography to answer questions such as “Which

document did I print just before meeting John in his office”?

Following on from earlier work on Forget-Me-Not, the Satchel project [Flynn,00]

aims to take advantage of the user‟s context to extend the range of services available,

in particular, to enable printing and transferring documents between users from the

PARCTAB. Early prototypes allowed users to transfer documents to other users or

printers by dragging and dropping document icons over user or printer icons.

Subsequent prototypes have adopted a web browser metaphor, web standards and a

DO-IT command, which are able to invoke the most appropriate action for any given

context. A user‟s location determines the action of the system, thus for example, if a

user selects a document when within close proximity to a printer, the document will

be printed, however if a user is in closer proximity to a large display the document

will be displayed instead. Other related examples of applications which strive to

support their user in everyday tasks include the Remembrance Agent [Rhodes,96],

Factoid [Factoid,01] and the context-aware WAP phone [Schmidt,00].

2.3.4.6 Summary

The preceding section presented related work in the area of context use which, as

introduced in section 1.5, can be divided into applications that merely present

contextual information to users, applications that are able to adapt or automatically

 43

execute services based on context and applications that tag/store context for later

retrieval. This author argues that context-aware applications must be able to support

a flexible approach to context use in contrast to existing applications which are

typically limited to dealing with only a portion of the available mechanisms and do

not adequately support all three. Furthermore, the extent to which applications make

use of context is currently a limiting factor and little re-use of context between

systems and applications exists.

2.3.5 Analysis of Supporting Context-Awareness

This section has considered work related to context-aware application design,

particularly in relation to the context-aware life cycle: context discovery, selection

and use.

In general, application specific approaches to context-aware systems design has been

adopted resulting in solutions that are inherently inflexible to application evolution.

In more detail, by creating applications based upon specific technologies context-

aware systems do not have widespread applicability since they are limited by the

characteristics of the specific technology upon which they are based and, therefore,

only available to systems supporting the particular technologies employed.

Furthermore, the approaches presented have not been intended to support the sharing

of context between context-aware applications and most researchers have focussed on

using contexts within a specific application domain, e.g. tourism, office assistants, and

the types of context used within an application remain largely static. There is

considerable argument to suggest that a number of valuable benefits exist for context

sharing between applications such as Forget-Me-Not and CybreMinder [Dey,00a].

However, to achieve this successfully a separation of the representation of context is

also required, in addition to insulating the context acquisition process from

applications. In terms of context acquisition, current approaches, with the exception

of the Context Toolkit [Dey,99c], suffer from a tight coupling between the

application and the underlying sensor technologies used to acquire context.

Furthermore, location has often formed the basis of context-aware application design

and has most commonly been demonstrated through indoor environments

[Abowd,97], [Bederson,95], [Fels,98], [Jose,99], [Oppermann,99a]. Clearly, other

 44

aspects of the physical and computational environment can be utilised and work on

teleporting, Cyberdesk [Dey,98] and TEA have exploited both identity and activity as

forms of context in addition to location. Knowledge pertaining to time, history or

people other than the user are still not widely incorporated into context-aware

applications yet these are fundamental pieces of personal information used in

everyday life [Abowd,99].

As described in this chapter, approaches to context interpretation including context

aggregation [Dey,99c], context synthesis [Pascoe,98a] and context fusion

[Schmidt,98b], [Chen,99] strive for a similar goal, transforming lower level (sensed)

context into higher level context usable by applications. However, they offer

alternative, and sometimes conflicting, approaches with varied support for notification

mechanisms such that none seems suitable for use in highly mobile environments.

Based on the work described in this section it can be argued that existing approaches

often focus on fixed infrastructures and utilise fixed information models. This

suggests a strong requirement for a more general information model capable of

utilising and sharing a wide range of contexts (location, identity, history, activity) and

manipulating context in any number of the methods presented (display, adaptation,

storage).

In summary, by developing systems with the above properties, it is possible to create

a research environment in which issues relating to context-awareness can be explored

more thoroughly. The rapid deployment of applications across a wide range of

environments increases the opportunity to experiment within real world settings and

thus, as a result, provide a sound basis for experimentation and deriving requirements

for future generations of mobile systems and applications.

2.4 Conclusions

This chapter has presented a comprehensive survey of application level support for

mobile context-aware applications. Current research tends to offer ad hoc, application

specific mechanisms to context-aware application design and, in general, often

neglects valuable techniques from the mobile computing field of research, in

 45

particular, those which relate to user mobility, disconnected operation and resource

discovery.

Based on this survey it can be argued that mobility and its consequences should not be

masked from the developer of mobile context-aware applications. Moreover, one of

the aims of this thesis is to identify new mechanisms for increasing the level of

awareness. More precisely, the mechanisms that enable the level of awareness to be

extended with respect to a user carrying a mobile device are investigated. This should

encompass more than just the surrounding environment, such as locally sensed

context, to include context pertaining to remote users and perhaps even their device

capabilities. To facilitate collaboration among users in these highly mobile

environments increased levels of awareness will be required to enable users to

collaborate using a wide range of devices and this can only be achieved by fusing

concepts relating to mobile and context-aware application design.

The remainder of this thesis focuses on the development of an architecture to support

context-aware applications in highly mobile environments. First, however, chapter

three goes on to describe the Lancaster GUIDE system, a mobile testbed used for

research into issues relating to context-aware computing in dynamic environments.

 46

Chapter 3

The GUIDE Prototype

3.1 Introduction

This chapter details the design and implementation of a prototype mobile context-

aware application aimed for use in an outdoor city environment. This application was

built to satisfy the requirements of tourists to the city of Lancaster and to provide

them with an intelligent visitor guide [Davies,98a]. The chapter provides a number of

insights into the challenges involved in building and deploying context-aware

applications designed for use in mobile environments [Cheverst,00a], [Cheverst,00b].

The chapter opens with an overview of the application domain and describes the

requirements capture process carried out early in the project to determine the real

requirements of tourists. The main focus is then directed toward a detailed account of

the design and implementation of the GUIDE prototype application developed to

support city visitors.

3.2 The GUIDE Project Overview

3.2.1 Background

The Lancaster GUIDE project was initially a two year collaborative venture involving

Lancaster University and Lancaster City Council and funded by the EPSRC (grant

 47

number GR/L05280). The aim of the project was to investigate the provision of

context-aware mobile multimedia computing support for city visitors, in particular,

investigating the many issues and challenges that arise from the development and

actual deployment of a context-aware electronic tourist guide in a practical real-world

environment, i.e. the city of Lancaster. In more detail, the project aim was to develop

a number of hand-portable multimedia end-systems which provide information to

visitors as they navigate an appropriately networked city. The end-systems were

designed to be context-aware, i.e. end-systems should have knowledge of their users

and of their environment including, most importantly, their physical location. This

information should be used to tailor the system's behaviour in order to provide users

with an intelligent visitor guide [Mitchell,98].

3.2.2 General Requirements for Supporting City Visitors

An initial set of requirements for the GUIDE prototype were obtained through a series

of semi-structured, one-to-one interviews with members of staff at Lancaster's Tourist

Information Centre (TIC). In addition, several days were spent at the TIC observing

the information needs of visitors, how the TIC staff supported those needs and in

particular focussing on any potential areas for future improvement. The requirements

identified were as follows [Davies,98a].

Ability to Support the Mobility of Tourists

One of the key requirements for GUIDE was the need to take into account the

mobility of tourists. More specifically, tourists generally expect to, and are happy to,

spend the day exploring the city and potentially walking for long distances. They may

also be carrying with them items such as back-packs, cameras and other accessories.

This means that the prototype application should be designed around a highly portable

end-system, such as a portable PC or pen tablet. This device should be lightweight,

able to operate outdoors in a variety of weather conditions and have sufficient battery

capacity to sustain continuous or intermittent use throughout the course of a day.

 48

Ability to Handle Multimedia Information

The prototype application must be capable of handling multimedia information.

Tourists may wish to read textual information relating to a particular attraction but

may also require the use of images, maps, animation, video or sound. Therefore the

system must be flexible enough to make use of a rich collection of media types.

Flexibility

One of the key requirements for GUIDE was the need to provide sufficient flexibility

to enable visitors to explore and learn about the city in their own way. For example,

some visitors prefer to follow a guided tour while others may choose to explore on

their own, following one or more guidebooks or street maps. Therefore, the system

should be capable of acting as an intelligent tour guide or as a richly featured

guidebook depending on the needs of the visitor.

It is also important that GUIDE enables visitors to control their pace of interaction

with the system. For example, visitors should be able to interrupt a tour in order to

take a coffee break whenever they desire. In addition, a visitor should not feel overly

pressured by the system to leave an attraction prematurely.

Context-Aware Information

A further requirement was that information presented to visitors should be tailored to

their context. Initially, two classes of context were identified, namely personal and

environmental context. Perhaps the most significant piece of personal context is the

visitor‟s interests, for example, in the city‟s history, maritime or architecture. Other

examples of personal context identified include: the visitor‟s current location, any

budget constraints, disabilities or, refreshment preferences they might have (e.g.

vegetarian). Examples of environmental context include: the time of day, the opening

times of attractions and the current weather forecast.

Context should also be used when presenting information to visitors, for example,

information should be presented in a way that is suitable given context such as a

user‟s age, technical background, or preferred reading language (e.g. English or

German). Context should also be used to adapt the presentation of information, for

 49

example, when visitors make return visits to landmarks, information presented should

reflect this fact, e.g. by welcoming the visitor back. Oberlander et al [Oberlander,97]

use the term coherence to describe the notion of tailoring the presentation of

information based on what the user has already seen.

Support For Dynamic Information

During the requirements study we found there to be a significant requirement for the

support of dynamic information. Such information should be made available to

visitors whenever their context deems this to be appropriate. For example, consider

the hypothetical scenario in which a visitor touring the city has expressed a particular

interest in Lancaster castle. However, when starting their tour, the castle happened to

be closed to the public because the courtroom, situated within the castle, was in

session. As it transpires, the court session finishes early and so the visitor should be

notified that the castle is now open to the public.

Support for Interactive Services

Studying tourist activities in Lancaster revealed that a surprising number of visitors

make repeat visits to the TIC, often during the course of a single day. In most cases

this is in order to ask members of staff specific questions or to make use of the

services offered by the TIC, most commonly the booking of travel or accommodation.

In order to help alleviate the need for visitors to walk back to the TIC to ask

questions, the system is required to support remote communications. In addition, the

system should also enable visitors to make accommodation bookings without having

to return to the TIC. More specifically, the electronic nature of GUIDE should enable

the system to offer greater flexibility than conventional pre-printed information sheets

and the use of a network-based architecture should enable the system to keep visitors

up-to-date with dynamic information and offer interactive services such as

accommodation booking.

3.3 The GUIDE Infrastructure

This section details the design of the GUIDE system and outlines the hardware and

software technologies adopted to underpin the application, associated constraints, and

 50

a justification for these design choices. In particular, issues relating to the choice of

end system selected, the underlying infrastructure and the prototype client and server

applications are described. The prototype described is still a fully operational

application and currently available, from the Lancaster TIC, for tourists to the city of

Lancaster to use [TIC,01].

3.3.1 End System Selection

A wide range of mobile devices for use as the GUIDE end-system were considered in

close consultation with the Lancaster TIC [Davies,98a]. These devices included pen-

based tablet PCs, such as the Fujitsu Stylistic [Fujitsu,01] and TeamPad [Fujitsu,98],

Windows CE based machines, such as the Casio Cassiopeia [Casio,99], and other

PDAs such as the Apple Newton [Apple,98]. After much deliberation, we chose to

use the transflective version of the Fujitsu TeamPad 7600 as the GUIDE end-system,

as shown in figure 3.1.

Figure 3.1 - The GUIDE end-system

The rationale for choosing the TeamPad over the other models is presented below.

 The TeamPad has a transflective screen that enables the unit‟s display to be

readable even in direct sunlight. Furthermore, the display is of sufficient size

and resolution to present both textual and graphical information with the

required lucidity. This offers a major advantage, in terms of screen real estate,

over smaller displays found on PDAs. The larger display should reduce the

amount of scrolling involved when reading information and should allow use

without a stylus (e.g. users using their finger to navigate the UI).

 The unit is sufficiently light (850g) to hold with one hand and the inclusion of

a shoulder strap allows the device to be carried easily for an extended period

 51

of time. Furthermore, the unit is relatively resistant to rough treatment due to

its ruggedised design.

 The TeamPad is based around a Pentium 166 MMX processor and therefore

has sufficient power to run the GUIDE application with reasonable

performance. The interactive nature of the proposed system makes the

performance issue crucially important since, unlike other network-based

tourist guide systems, GUIDE utilises the local processing power to provide

visitors with dynamically tailored tours of the city; since the tour creation

algorithm is computationally intensive, the longer the time taken to generate a

tour, the greater the likelihood of a user of the system becoming frustrated.

The performance of mobile devices such as the CE based devices available at

the time (late 1997) were very disappointing, even for rendering web pages.

 The TeamPad is capable of running the Microsoft Windows 95 operating

system and hence all of the development kits and drivers associated with this

operating system were available. At the time, the Apple Newton and CE

based devices did not include adequate driver support, i.e. drivers for

appropriate PCMCIA based wireless networking cards.

3.3.2 Communications Infrastructure

3.3.2.1 Overview

One of the primary aims of the GUIDE system was to investigate how high-

bandwidth cell-based wireless networking infrastructures could be utilised to

disseminate dynamic information to handheld GUIDE units. In particular, an

infrastructure was required capable of enabling GUIDE units to achieve high-speed

access to general web resources. Furthermore, we also wanted to explore how the

cell-based nature of the network could be used to provide GUIDE units with

positioning information [Davies,01]. More specifically, the communications support

for GUIDE was developed to address the following additional requirements

[Davies,99]:

 Scalability: The system must be capable of supporting a potentially large user

community requiring access to data simultaneously.

 52

 Flexibility of Services: The system should support data broadcast and

interactive services. Thus, it must provide a high bandwidth down link channel

for the broadcast of data and include slots within the broadcast schedule to

enable clients to make explicit requests for resources.

 Support for Disconnected Operation: Since network coverage throughout

the city will not be complete and black spots will be present, the system must

be able to survive periods of network disconnection and, where possible, this

should not adversely disrupt the services to visitors as they explore the city.

3.3.2.2 System Architecture

The wireless network used for GUIDE is based on Lucent Technologies‟ 802.11

compliant ORiNOCO [ORiNOCO,01] (formerly WaveLAN) system which operates

in the 2.4GHz ISM (Industrial, Scientific and Medical) band and offers a maximum

bandwidth of 2 Mbps per cell. Currently, the GUIDE infrastructure consists of six

communication cells deployed within a region of the city popular with tourists. A

single Linux-based cell-server is associated with each geographic area (cell) and

contains two network interfaces. The first interface provides wireless access to mobile

GUIDE units within that geographic area while the second interface is used as a link

back to the university campus network. Some cell-servers were installed within

university owned premises around the city and so the link back was via a leased line.

In buildings owned by the City Council, BT Keyline links based on the Symmetric

DSL technology and providing a two-way 2 Mbit leased line were installed.

The range of ORiNOCO is approximately 450m in free space although ORiNOCO

signals have very poor propagation characteristics through buildings and, therefore,

by the strategic positioning of cell-servers, we have been able to create relatively

small and asymmetric cells. Within the context of GUIDE this is a positive feature

because by creating smaller, non-overlapping cells more accurate positioning

information can be provided. For example, a communications cell for the TIC is in

place which covers the immediate area surrounding the TIC but does not (by a small

number of metres) crossover into the cell associated with the nearby castle. In order to

manage the strategic positioning of cells, it was necessary to repeatedly place the base

 53

station antenna in different locations to determine how the range of the cell had been

affected (through the use of test software supplied by Lucent technologies).

An additional benefit of producing small non-overlapping cells is that it does not

require the use of the ORiNOCO roaming facility. Had roaming been enabled then

additional and unwanted network traffic would have resulted to support handover as

units moved between cells. By disabling the roaming facility, GUIDE units are

effectively silent on the network unless they request information that is not on the

current broadcast cycle [Davies,99]. Furthermore, it has been impossible to create

accurate cell boundaries due to signal reflections, interference and changes in

propagation patterns resulting from fluctuations in the density and placement of

objects within the cell. For example, a cell located near Lancaster‟s public square

shows a varying degree of propagation down the square's access roads with prevailing

weather conditions.

3.3.3 Communications Protocol

3.3.3.1 Overview

The overall GUIDE system, shown in figure 3.2, may be viewed as a central web

server accessible by mobile clients via the wireless network. In order to improve the

performance of the system, caches (cell servers) are placed in each cell and user

requests are, where possible, satisfied by this local cache (geographically).

In addition, periodic broadcast schedules containing a subset of the contents of each

cell's cache are transmitted to users within the cell. In this way, users who enter a cell

receive (and cache locally) frequently requested pages for that geographic area. This

approach has a number of benefits:

 Improved response times: Many of the pages which users request will

already exist in their local cache (on their mobile unit) and consequently

response times will be extremely rapid.

 Improved scalability: Since clients receive many of the pages they require

without transmission the system scales well as the number of end-systems

 54

increases. The exact extent to which the system scales depends on the pattern

of user requests and this is discussed later in this section.

 Power saving: The ORiNOCO cards utilise less power when receiving than

when transmitting. By reducing the need for clients to transmit requests there

is a corresponding decrease in power consumption.

The precise benefits of the broadcast based approach depend on a number of factors.

Most crucially, in a situation where there is a large degree of uniformity of page

requests (i.e. most users requesting the same subset of pages such as local maps) the

system scales extremely well. As the uniformity of requests diminishes so the gains

over a conventional request-reply system are reduced. In the worst case (i.e. no

commonality) the system will perform worse than a conventional system since time

will be spent re-broadcasting pages which are not required.

While ensuring the conformity of user requests would be a significant problem in a

general purpose system, within the context of GUIDE a user's access patterns will be

largely dictated by their physical location. As a consequence, it is expected that each

cell's cache will gradually build up a broadcast schedule containing information

relating to the physical location of the cell server.

Additional factors which often affect the performance of broadcast based systems are

the degree to which parameters such as the number (length) of pages broadcast, the

frequency with which pages are broadcast and the strategy for replacing pages in the

broadcast schedule can be tuned to match application requirements [Imielinski,94].

This may be less critical for the GUIDE system than for most other broadcast based

systems. In particular, a key objective is to reduce the time a user perceives they are

waiting for pages, i.e. the number of pages which have not already been cached when

the user attempts to access them. If an assumption is made that each end-system has

an in-memory cache of, for example, 6 MB then this is ample to cache almost all of

the information relating to a given cell. Over a 2 Mbits/sec wireless network it would

take approximately 30 seconds to completely fill such as cache: substantially less time

than it would take most users to read the first page of information relating to a given

geographic area. Furthermore, it is possible to delay presenting information to users

regarding a new cell until sufficient pages are cached since a user has no means of

knowing that they have entered a new cell until they are informed by the application.

 55

Hence, assuming a user does not deviate substantially from the normal access patterns

they will experience almost no delay in accessing information. The relatively high

network bandwidth, large caches and predictable access patterns found in GUIDE

conspire to make fine tuning of the classic broadcast strategy parameters unnecessary.

Two further responsibilities of the GUIDE cell-servers are providing position

information and facilitating Internet access to GUIDE end-systems. In more detail,

the cell severs periodically broadcast beacons (a UDP datagram encapsulating a

location identifier) to inform GUIDE end-systems of their current cell. This

information is received by the client applications‟ position sensor (see section 3.5.7)

to notify visitors of their new location. Furthermore, cell-servers provide gateway

functions to enable the GUIDE end-systems to access services on the fixed network

such as accommodation reservation systems.

3.3.3.2 Engineering issues

The broadcast based caching system utilised in GUIDE uses proxies running on both

mobile end-systems and cell servers. The cell server proxies build up lists of

resources (i.e. HTML pages and images) to broadcast and periodically transmit these

resources within their geographic area (cell). Each broadcast schedule includes an

index to the contents of the schedule at the start and end of each transmission enabling

mobile units to determine the contents of the broadcast cycle (see figure 3.2).

Lancaster Castle

Cell Server

GUIDE Central

Web Server

Update Console.

e.g. Cafe menu of the day

Broadcast Schedule

Mobile GUIDE Units

Wireless Cell
GUIDE

GUIDE

GUIDE

GUIDE

GUIDE

GUIDE

GUIDE

GUIDE

GUIDE

Index Beacon EventHTML

e.g. Castle closing event

e.g. Castle home page

e.g. Castle beacon

Broadcast Schedule

City Museum

Cell Server

lancaster Priory

Cell Server

Internet

Figure 3.2 - GUIDE system architecture and broadcast schedule

All information is multicast to a well known IP multicast address to which all mobile

clients are subscribed. It is possible to pre-heat the server-side proxies list of resources

 56

to broadcast in order to reduce the amount of requests made given a cold start on the

client side. Since the server side application runs on a wide range of hardware ranging

from Intel 486 Processor based PCs operating at 33 Mz containing 4 MB RAM to

dual processor Intel Pentium 200Mz processors containing 64 MB RAM, there are a

number of adjustable broadcast parameters (shown in figure 3.3) including:

 Broadcast delay (BD): The time (i.e. delay) between the end of the current

broadcast schedule and the start of the next schedule.

 Inter-resource delay (IRD): The time (i.e. delay) between items within the

broadcast schedule to be broadcast.

Index Beacon EventHTML

Broadcast Schedule

Index

Broadcast DelayInter Resource Delay

Index Beacon

Figure 3.3 - The GUIDE broadcast schedule

The broadcast schedule is implemented as a Vector of entries in Java where each

entry in the Vector may be tagged according to its type, as shown in figure 3.4. The

types identify each data item as either a request, a response, an item to be cached, a

service item (i.e. update) or simply an index to the broadcast schedule.

public class GuideBroadcaster implements Runnable

{

 static final int REQUEST = 0; // indicates a user request

 static final int RESPONSE = 1; // indicates a server response

 static final int CACHE = 2; // data item to be cached

 static final int SERVICE = 3; // service message. i.e. object update

 static final int INDEX = 4; // indicates start/end of transmission

}

Figure 3.4 - The GUIDE broadcast types

Client-side proxies listen for broadcasts and fill up their caches with the contents of

the latest broadcast schedule. All data items (files or objects) in the broadcast

schedule are assumed to be the most recent versions available and as such

immediately overwrite any existing resource with the same filename within the local

cache. If a mobile client enters a cell midway through a broadcast transmission it will

only partially fill its cache but will be able to determine from the trailing index those

items which it has missed but which will be retransmitted in the next cycle.

 57

All user requests for resources are routed via the client-side proxy (see section 3.5.4)

which issues explicit requests to cell servers if the resource does not exist locally in

the cache and the client does not believe it is scheduled for transmission soon

(determined from the index). A request received by a cell-server proxy for that

geographic area which will fetch the required resource if it is not already cached

locally and re-transmit the response to the requesting client before scheduling the

page for transmission as part of the next broadcast cycle.

Since GUIDE does not make use of Mobile IP or WaveLAN roaming, mobile clients

which require only those pages contained in the current broadcast cycle need never

make explicit requests of the cell servers.

3.4 Modelling Context-Sensitive Information in GUIDE

3.4.1 Overview

The GUIDE information model was required to represent and store the following

distinct types of information [Cheverst,98]:

 contextual information, which can be tailored to reflect a user‟s context.

 geographic information, which can be expressed either in geographic (e.g. „at

co-ordinates x,y‟) or symbolic terms (e.g. „in the museum‟) [Leonhardt,98].

 hypertext information, which includes global (i.e. Internet based) content such

as the World Wide Web or GUIDE specific tourist content.

 active components, capable of storing state such as a visitor‟s user preferences

and, in addition, performing specific actions or satisfying certain requests.

Although, individually, each of these information types has been successfully

modelled, at the time of development there were no suitable models capable of

handling the full complement of information types described above. For example, the

current data models that have been designed for supporting context-sensitive

information, e.g. stick-e-notes [Brown,96], are not well suited for managing

geographic information. More specifically, such models require additional

mechanisms if they are to be made capable of reasoning about the proximity of

 58

context-sensitive nodes and answering questions such as “what locations are near

me?”. Similarly, the data models supported by the current range of object oriented

Geographic Information Systems are inappropriate for representing context-sensitive

information [Coyle,97]. In particular, such systems lack the necessary triggering

mechanisms required for handling the events raised by changes of context.

The lack of an appropriate model for satisfying the above requirements provided the

motivation for developing a new information model based on the concept of

integrating an active (geographic) object model with a hypertext information model.

The remainder of this section describes the main components of the GUIDE

information model, namely location objects, navigation point objects, neighbour

relations and hypertext information as depicted in figure 3.5.

castle

café

gallery

priory

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.
Welcome to
the GUIDE
system.

Welcome to
the GUIDE
system.

Location Objects

Hypertext

Pages

Hypertext Page

Reference

Hypertext

Links

Object References

(Neighbour Relations)

Navigation Point Objects

Figure 3.5 - The GUIDE information model

3.4.2 Modelling Location

3.4.2.1 Overview

The object model is used to represent entities within the city and also model the

relationships between these entities. The model therefore consists of places

(GuideLocation and GuideNavigationPoint objects) and relations between

those places (GuideNeighbour objects). The inclusion of two distinct types of

object to represent places (locations and navigation points) is required since a single

class for representing entities would not be sufficient, for reasons described below.

 59

3.4.2.2 Location Objects

Location objects are the fundamental building block of the model and used to

represent physical locations (such as tourist landmarks) within the city. Location

objects inherit the geographic properties of the NavigationPoint (see section

3.4.2.3) base class and include additional functionality to enable the state information

to be accessed and modified.

The GuideLocation class is implemented as an abstract class. This means that the

class cannot be instantiated directly but that specific instances, such as

NavigationPoint can be created as sub classes of type GuideLocation.

GuideLocation therefore acts as a common interface and allows standard methods

to be defined. Furthermore, sub classes are able to overwrite these methods should

individual location objects be required to include extra functionality. In more detail,

this approach offers the following advantages:

 flexibility: Since specific location instances can be tailored accordingly while

maintaining a standard interface.

 extensible: A common interface enabling access to all subclasses allows

subclasses to be added/removed without changing the rest of the application.

 reusability: Since the common interface is declared as abstract, method

declarations and their default behaviour can be provided. Therefore, only

changes to the individual sub classes are required should anything other than

default behaviour be required.

public abstract class GuideLocation extends GuideNavigationPoint implements

Serializable

{

 private GuideContext dynamicInfo; // represents contextual information

 private String photoAddress; // URLs for location descriptions,

 private String summaryLink; // brief summaries and images

 private String summaryText, descriptionText;

 private String commentsLinks;

 private Vector comments, nearbyPlaces;

 private int commentsTotal;

 private GuideInterests supportedInterests;

 GregorianCalendar openingTime, ; // opening and closing times

 int minDuration, maxDuration; // time visitors spend at attraction

 int averageDuration;

 float minCost, maxCost; // approximate cost of attraction

 int[] timeWeights; // weight the opening hours

 boolean[] openDays; // days of the week attraction is open

}

Figure 3.6 - The GuideLocation interface

 60

One example of a location object might be a specific museum. This museum object

would include state representing its physical location within the city, opening times,

the current exhibition and links to other nearby locations. The GuideLocation class

includes access methods which allow the context associated with that location to be

accessed, queried and updated by other components within the system. The

GuideLocation interface contains the following methods:

public int evaluate(GregorianCalendar time, GuideContext thisContext)

This method is used by the system‟s tour creation component (see section 3.5.10) and

performs an evaluation of the suitability of visiting that particular location based on

some contextual information. For example, a call to castle.evaluate(T,C);

would cause the object relating to the castle to be evaluated based on an arrival time T

given Context C. This context could include information relating to the visitor

profile, their budget allowance and the current weather forecast. The integer value

returned is used to suggest a suitable tour to the user. The algorithm is described in

more detail in section 3.5.10.

public String get(String name)

This generic interface allows access to the object‟s variables and associated context.

For example, a call to tic.get(“NEIGHBOURS”); would cause the object

representing the tourist information centre to return a list of object references for those

landmarks that are immediate neighbours. Using this list of object references the

GUIDE system is able to carry out route-finding and navigation tasks as well as

placing context-sensitive nodes in a geographic context, for example, helping answer

user queries such as “What attractions are in this area?”.

public void execute(String command)

The execute method allows specific method calls to be executed by passing as a

parameter the name of the method to call. For example, when a user enters a historic

landmark such as Lancaster Castle the following method

castle.execute(“PlayWelcome”) could be invoked to play an audio or video

stream.

 61

3.4.2.3 Navigation Objects

Navigation point objects are used only to support the construction of guided tours and

for route guidance purposes and represent way-points between location objects.

Navigation point objects contain purely geographic state (as shown in figure 3.7) that

can represent a point within the city (e.g. a road junction or cross roads).

public class GuideNavigationPoint implements Serializable

{

 private float longitude, latitude;// GPS Coordinates

 private String name, fullName; // e.g. castle, Lancaster Castle

 private String inRegion; // unique id of cell server

 private int id; // System wide unique id

}

Figure 3.7 - The GuideNavigationPoint interface

3.4.2.4 Modelling A City

Relationships between objects within the geographic model are represented in two

distinct ways. First, location objects may contain references to other location objects

within the model, or, relationships can be created between location objects as separate

GuideNeighbour objects. The first type of relationship, called the nearby

relationship, is used by the application to help build (dynamically) a hypertext page of

information that is able to tell a user what attractions are physically nearby their

current location. The GuideNeighbour relationship offers a more flexible and

extensible approach and includes attributes (weights), modelling characteristics such

as the distance or cost of travel between two points using variety of means of

transport. Using this representation other components such as the tour guide object

can traverse objects and relationships to determine, for example, neighbouring

locations and optimal routes between any number of points. Figure 3.8 shows an

example relationship between two location objects. This example shows two

alternative routes between the castle and TIC (and vice-versa), each with different

route guidance instructions and associated weightings.

 62

tic castle

Travel by Foot = 20

Travel By Bus = 5

As you leave the TIC head

up castle hill

Use the stop outside the TIC

and take the No. 4 bus...

Figure 3.8 - The GuideNeighbour relationship

3.4.2.5 Modelling Context

In addition to the use of locations and navigation points as described above, each

object within the model has an associated GuideContext object. In essence this is

used to represent and maintain dynamic information, for example, context relating to

its current status, that is, whether an attraction is currently open or closed. The

context object, shown in figure 3.9, is modelled as a hashtable of name-value pairs. A

time stamp and an expiry field is associated with any contextual change. This enables

other components to query an object and retrieve its state and determine its validity.

public class GuideContext implements Serializable

{

 private Hashtable context; // a hashtable of name-value pairs

 private GregorianCalendar timestamp; // time context was last updated

 private int timeout; // context expires (lease time)

}

Figure 3.9 - The GuideContext interface

3.4.3 Hypertext Information and GUIDETAGS

3.4.3.1 Overview

In addition to the object model described above a standard hypertext model to

represent information in the GUIDE system has also been adopted. This allows

information to be created and structured using well understood techniques.

The combination of the object model with a hypertext information repository provides

an information model which satisfies the requirements discussed at the start of this

section. The key feature of this approach is that it supports a high degree of coupling

between the object model and the hypertext information. In more detail, the object

model provides a convenient mechanism for accessing hypertext pages in much the

same way as a search engine enables access to web pages. More specifically, objects

 63

contain references (URLs) to hypertext pages providing users and application

components with multiple entry points into the hypertext information base.

Crucially, hypertext pages are able to reference the object model which enables an

author to construct a hypertext page which can interrogate the state of objects within

the model (e.g. day, time, weather) and hence the current context of the environment.

The page can thus be displayed differently depending on factors such as the number

of times a visitor has been to a location or the current status of the attraction

[Cheverst,01d].

3.4.3.2 GUIDETAGS

In order to allow hypertext pages to reference the object model the authors of standard

hypertext pages are able to augment their pages with tags [Cheverst,98],

[Cheverst,01a]. These tags may make method invocations of the object model, query

the state of the model or control the display of the information to a visitor (see

example in figure 3.10). These GUIDETAGS take the form of special instructions

which are able to query the GUIDE object model, for example a tag might be used to

represent the time of day. Thus, if the time of day was morning then the café menu

would be displayed differently to that shown if the time of day was afternoon.

<P> Welcome to <GUIDETAG INSERT POSITION>

From here you can visit the neighbouring locations of:

<GUIDETAG INSERT NEIGBOURS>

<GUIDETAG INTEREST ((HISTORY GREATER 50) AND (ARCHITECTURE GREATER 50))

The following features will be of particular interest to you ……. <P>

</GUIDETAG>

Figure 3.10 - Example use of GUIDETAGs

Appendix B details the syntax and semantics relating to the range of tags in use by the

GUIDE prototype application and also describes how these tags are used to create

adaptive hypertext information based on both the user‟s personal context and the

environmental context.

The information model (object model and hypertext information base) supports the

tailoring of information presented to users without requiring the use of a specialised

database to generate the information on a per-request basis. In addition, the GUIDE

 64

system can operate using cached (generic) information without requiring continual

access to an information service.

3.4.3.3 Generating Dynamic URLs and Content

To support the dynamic nature of the content required by the GUIDE system, the

information model supports the notion of hypertext pages containing partially

incomplete URLs to other resources within the information base. The system is able

to inspect and dynamically rebuild URLs based on a user‟s context in order to retrieve

the required resource. To successfully rebuild a URL, a user‟s preferred reading

language and current location is required, which is obtained from the user profile.

In more detail, URLs within GUIDE take the form specified by Berners-Lee et al

[Berners-Lee,94], for example, http://www.bbc.co.uk/index.html. The client agent

(see section 3.5.3) inspects each URL and determines whether or not the hostname is

guide specific, i.e. http://guide.lancs.ac.uk/. URLs representing hypertext pages or

resources (e.g. images) stored on the web are retrieved by the proxy object normally.

URLs that relate to GUIDE specific tourist information require further inspection. A

complete GUIDE URL takes the form http://guideserver/language/object/resource for

example http://guide.lancs.ac.uk/english/castle/history.html. A request for this

resource would indicate that the resulting page would be a history related hypertext

page for the castle area of the city presented in English.

The required reading language, object of interest or resource may be omitted from the

requested URL and in these cases the URL is inspected and rebuilt to create a valid

URL. For example, omitting the reading language causes the user profile to be

queried and the user‟s preferred reading language to be determined and inserted

dynamically. Similarly, omitting the location object required causes the system to

default to using the user‟s current location, which is inserted dynamically.

This mechanism offers the advantage that generic pages can be created with links to

other regions within the city (for example, the castle or the city museum) and the

hypertext links within those pages need not include the user‟s reading language. This

permits two users of the system with different preferred reading languages (e.g.

 65

English and German) to follow the same hypertext link and be taken to the page they

desire based on their preferred language, i.e. different pages.

3.5 The GUIDE Application Design and Implementation

3.5.1 Overview

The GUIDE prototype application was designed as a number of modules to aid

application evolution and maintenance. The complete set of computational objects

that make up each instance of the application prototype are illustrated in figure 3.11.

Filter Proxy Proxy

Web

Server

Browser

Position

Sensor

Client

Agent

Profile

Local GUIDE Unit Remote Cell Server

Path

Finder

Cache

Cache

GUIDE

Communications

Protocol

Figure 3.11 - The GUIDE application architecture

The following sections consider the design and implementation of each functional

module in turn.

3.5.2 The GUIDE Browser

The GUIDE browser component represents the main user interface to the GUIDE

system. In essence the browser is implemented as a Java Swing application

containing an embedded web browser, Sun‟s HotJava HTML component [Sun,99a].

All user interactions are carried out using the web browser interface and, in addition

to supporting standard navigation buttons found on most common web browsers (such

as back, forward and reload), the GUIDE browser contains widgets relating to specific

functionality provide by the GUIDE system. The extra functionality afforded by these

 66

widgets includes the tour generation system and interactive services. Further

information relating to the GUIDE user interface can be found in section 3.6.

3.5.3 The GUIDE Client Agent

The client agent is the name given to the application‟s session manager on the mobile

GUIDE unit which is responsible for co-ordinating all client side object interactions.

The client agent has the responsibility of starting other component threads of

execution and maintains a handle to each executing thread. This allows all

components within the system to interact with one another via the client agent. The

client agent is also responsible for recording a user‟s current and previous locations

within the city and for maintaining a log of all events processed by the application.

These events include user interactions (such as button presses), all requests and

responses for hypertext resources and other events such as hearing a location beacon

from a cell server. All events are stored locally in a log file which enables an analysis

of the performance of the system to be carried out at a later date. The log files were

one of the mechanisms used to help evaluate the GUIDE system during the user field

trial described in [Cheverst,00a]. A sample log file is shown in figure 3.12.

User

location

Time Details

tic 9:19 Last location update received 30 secs ago.

tic 9:23 Currently receiving location updates

tic 9:34 Saving User Preferences

tic 9:34 Local::http://guide.lancs.ac.uk/information/welcome.htm

tic 9:34 Local::http://guide.lancs.ac.uk/common/images/dude.gif

tic 9:34 Last location update received 30 secs ago.

castle 9:36 Currently receiving location updates

castle 9:38 Tour Button Pressed

castle 9:38 Displaying Tour Guide To User

Figure 3.12 - Sample user trace

3.5.4 The GUIDE Proxy

The proxy component accepts all incoming HTTP requests for information from the

browser and is responsible for processing these requests on the browsers‟ behalf. The

proxy first inspects the URL to determine whether or not a GUIDE specific resource

or a more general web resource is required. If the request is GUIDE specific then the

proxy inspects the URL further to determine its validity (see section 3.4.3.3

Generating Dynamic URLs). The proxy attempts to satisfy all requests locally from

 67

the cache before making explicit requests of the remote cell server. Having retrieved

a resource either locally from the cache or from the remote cell server the proxy then

determines whether or not the page requires further processing before being handed

back to the browser. If a GUIDE specific hypertext page is requested then it may

contain GUIDETAGs and therefore requires processing by the filter (GuideFilter)

component. An example call to the filter component is shown below:

filter.filter(loc, resource, tempLocation, userProfile);

This invokes the filter method contained within the GuideFilter component and

passes as parameters the user‟s current location, the resource (i.e.hypertext page) to be

filtered, a temporary file location to store the filtered resource (thus preserving the

original copy in the cache) and a handle to the user‟s profile. Figure 3.13 summarises

the actions of the proxy component.

wait for

request

inspect

URL

check valid

URL

retrieve

from

cache

got the

resource?

request

from

server

GUIDE

resource?

resource request

yes

no

resource

available

resource

recieved

store in

cache

GUIDE

resource?

filter

resource

yes

resource

ready for

displaying

pass to

browser

yesno

no

iMac

cell server

local disk

local disk

no

Figure 3.13 - The GuideProxy

3.5.5 The GUIDE Filter

The filter is responsible for processing GUIDE specific hypertext pages and creating

dynamic (context-sensitive) content [Cheverst,00c]. The filter parses GUIDE specific

hypertext pages searching for GUIDETAGs to process. The actions taken by the filter

depend upon the type of GUIDETAG found. Although these were described in detail

in section 3.4.3.2, to summarise the filter is able to:

 68

 Create Content Dynamically: Hypertext content can be created dynamically

by querying the object model to retrieve context-sensitive information. For

example, when personalising a page the user profile is queried to obtain the

user‟s full name.

 Modify Existing Content: Hypertext content can be shown, hidden or

modified from a user depending on their user profile. For example, a

hypertext page for a particular café may include the day‟s menu. A vegetarian

user making a request for the menu results in the page being modified so that

vegetarian information is located near the top of the page. Similarly, a user

who has not expressed an interest in the city‟s many historical landmarks will

receive hypertext pages without the historical content.

3.5.6 The GUIDE Position Sensor

The position sensor is responsible for notifying system components of changes in a

user‟s physical location within the city. The position sensor joins and listens on a

well known multicast address for location updates represented by beacons from cell

servers. To avoid problems at cell boundaries where a user may receive location

beacons from multiple sources, a smoothing function is used that dictates that the user

must „hear‟ at least N consecutive beacons from a new cell server before notifying

this new location to system components. On hearing a new beacon, for example the

beacon relating to Lancaster Castle, the position sensor notifies the client agent of this

change in location. The client agent then instantiates the object relating to this new

beacon, in this example the object representing Lancaster Castle. All locations are

represented by the GuidePosition component (shown in figure 3.14) which

contains the location object relating to the users current location and of all the nearby

locations. Since a user is likely to request information relating to either their current

location or attractions located close by, this improves the response times should a

GUIDETAG be processed that requires the object model to be queried. Finally, the

client agent notifies the browser of the new location and the user interface is updated

accordingly (see figure 3.17 showing a screenshot of the application in use).

 69

public class GuidePosition

{

 // Store a user’s current and previous location

 private GuideLocation currentLocation;

 private GuideLocation previousLocation;

 private GuideRegion currentRegion; // user’s current region

 // Maintain a table to hold nearby locations objects

 private Hashtable nearbyPlaces;

 // Maintain a handle to the client agent component

 GuideClientAgent handle;

}

Figure 3.14 - The GuidePosition interface

3.5.7 The GUIDE Cache

The cache is responsible for maintaining a local repository of hypertext pages, related

resources and location objects for retrieval by other system components. This avoids

the need to make explicit remote requests for resources and increases the response

times perceived by a user. The cache component joins and listens on a well known

multicast address for cache updates broadcast by the cell server as part of the

broadcast schedule (see section 3.3.3.2). The cache replacement policy is based on

the assumption that data items received as part of the broadcast are the most recent

versions available and should therefore replace any previous items.

3.5.8 The GUIDE User Profile

The user profile component is responsible for storing a user‟s personal details and is

queried by other GUIDE components to enable context-sensitive content to be

displayed to a user. These are decided by the user on application initialisation and do

not generally change during the lifetime of a session. The user profile contains a

number of attributes including:

 Personal attributes, such as username, group name (if touring as part of a

group), full name, reading language and age.

 Tourist interests, represented by the GuideInterests class, represents user

interests as a hash table of name and value pairs. For example it may contain

entries such as “Vegetarian = 0; History = 100” which indicates that the user is

interested in history but is not a vegetarian.

 70

 Activity, context relating to a user‟s current activity, such as whether they are

currently busy or free. This information can be used by others to determine

when to interrupt someone via the message service, described in section 3.7.5.

Additionally, the user profile maintains a history of all the attractions visited and

actions carried out by a user. In more detail, the attractions visited, the tours followed

and the resources requested are all recorded and stored as part of the profile and used

to personalise hypertext pages when a user enters an area of the city (for example,

“Welcome to….” or “Welcome back to …”). This information could also be used to

create a personalised brochure or hypertext document as a souvenir of their visit. The

GuideUserProfile interface is shown in figure 3.15.

public class GuideUserProfile implements Serializable

{

 // constants to represent user activity

 public static final int FREE = 0;

 public static final int BUSY = -1;

 // generate a unique id based on the username, date and time

 private String SessionName;

 private String userName; // e.g. Keith

 private String password;

 private String fullName; // e.g. Keith Mitchell

 private String groupName; // e.g. School or family name

 private String language; // e.g. English, French or German

 private GuideInterests interests; // e.g. History, Music, etc.

 private boolean contactable; // user wishes to be contactable?

 private boolean anonymous; // user wishes to remain anonymous?

 private int currentContext; // Store current context, e.g. on a tour

 private Vector toursFollowed; // Store any tours followed

 private Hashtable visited; // Store where a user has visited

 private Hashtable visitedPages;// Store resources accessed and frequency

}

Figure 3.15 - The GuideUserProfile interface

3.5.9 The GUIDE Notification Dispatcher

The notification dispatcher is responsible for receiving events from the remote cell

servers and processing them appropriately. The dispatcher joins and listens on a well

known multicast address for incoming notifications (or events) and, dependant upon

the type received, is able to carry out the following actions:

 Update: Notifications may contain object model updates which could either

be a change in context relating to a particular attraction or a new object to

 71

replaces an existing object. For example, an attraction closing early would

require a notification to be dispatched to notify the mobile GUIDE units that

this attraction is no longer available. Similarly should a landmark change (for

example, a shop being sold and converted into a café) then this information

also needs to be updated on the mobile GUIDE units.

 Display: Notifications may contain data that needs displaying to the user.

These take the form of messages and allow users of the GUIDE system to

communicate with one another. In addition, the tourist office is able to

dispatch events that they feel may be useful to users of the system, for

example, warning users of traffic congestion on the city one way system.

 Execute: Notifications may also be used to invoke methods on the mobile

client. For example, the tourist office may wish to collect the log files stored

on the mobile clients and therefore dispatch an event causing the mobile

clients to return their log files to the tourist office.

Notifications are represented within GUIDE using the GuideNotification class

(shown in figure 3.16) and may be directed towards a number of different components

within the information model, such as:

 Location objects: Notifications intended for location objects are used to

update state pertaining to that object or to invoke the methods of that object.

 User profile: Notifications intended for the user profile object are context-

sensitive notifications and may not be intended for all users. Therefore, the

attributes stored in the incoming event are compared to the user preferences

stored in the profile to determine whether or not the event was intended for

this recipient. For example, the tourist office may dispatch an event relevant

to vegetarian users or users with an interest in history.

 Users: Notifications taking the form of messages to be displayed may also be

context-sensitive. In more detail, messages may be intended for a specific

user, a group of users or all users of the GUIDE system. Support for sending

group messages enables family members or groups of school pupils using the

system to communicate with the rest of their party using a group identifier.

 72

Finally, to enable events to be delivered in an appropriate and timely manner context-

sensitive attributes (delivery types) are supported to control the delivery of

notifications. First, notifications may be delivered if certain contextual conditions are

satisfied. For example, a notification relating to a musical event such as a concert may

be tagged with a musical contextual attribute. Once received, the notification will be

compared against a user‟s preferences and will be delivered if they are interested in

this topic. Second, notifications may be delivered if the intended receiving object is

the user‟s current location, within a specific geographic area or if the object is

currently active. Currently active refers to an object representing the user‟s current

location or its immediate neighbours. This allows notifications to be processed at

particular points along a guided tour. Finally, notifications may be delivered instantly.

public class GuideNotification

{

 // Notification types supported

 public static final int UPDATE = 0; // Update the object model

 public static final int SHOW = 1; // Display events to users

 public static final int EXECUTE = 2; // Execute some code

 // Delivery types supported

 public static final int ALWAYS = 0;

 public static final int IFCURRENT = 1;

 public static final int IFINREGION = 2;

 public static final int IFACTIVE = 3;

 public static final int IFCONDITION = 4;

 // Recipient types supported

 public static final int OBJECT = 0; // an object update

 public static final int REGION = 1; // objects within a region

 public static final int INTEREST = 2; // user interests

 public static final int USER = 3; // a user (e.g. message)

 public static final int USERGROUP = 4; // a group message

 public static final int ALLUSERS = 5; // a message to all

 public static final int SERVERACK = 6; // Server Acknowledgement

 public static final int USERACK = 7; // User Acknowledgement

}

Figure 3.16 - The GuideNotification interface

3.5.10 The GUIDE Path Finder

The path finder or tour guide component is responsible for traversing the location and

navigation point objects and creating a representation of the city of Lancaster. This

model of the city can then be used to generate personalised tours of the city.

The creation of a tour of the city does not simply aim to create the shortest route

between attractions within the city, but offers a more intelligent tour based on a

 73

variety of factors. The tour creation component was designed after consulting a

professional human guide who would take into account issues such as [Davies,01]:

 Visitor interests: Any guide should offer a tour which reflects the interests of

the visitor.

 City attractions: Visitors often want to visit a city‟s main attractions even if

these do not fall directly within their normal interests.

 Travel Constraints: Many visitors have mobility constraints, either physical

or financial, that restrict a visitors travel plans through the city should be

catered for (for example, wheelchair users).

 Available time: Most visitors have a limited time to spend in a city and tours

have to be created to maximize time without making the visitor feel rushed.

 Time sensitivity of attractions: In many cases there are good and bad times

to visit specific attractions. For example, a museum that is open to parties of

school children in the mornings may be best avoided if a visitor is hoping for a

quiet tour of the museum. Similarly, on a day with showers forecast for the

morning and sun in the afternoon then it may be desirable to visit a park in the

afternoon during the warmer hours of a day and take an indoor tour first.

 Weather: For many outdoor attractions the prevailing weather conditions

make a big difference to the amount of time visitors spend at a particular

attraction. The weather also affects the desirability of certain travel paths. For

example, having a tour-guide that suggests a stroll along a river bank followed

by a picnic when it is raining will clearly be ignored by users.

 Budget constraints: Many visitors have financial constraints and a tour-guide

needs to be sensitive to these issues.

The calculation of a tour therefore depends on a variety of factors and through

achieving the correct balance between different demands on the visitor‟s time and

money. Furthermore, since many of the factors described above may vary over time it

is often necessary to recalculate tours during the course of a single day. For example,

a user may spend longer than anticipated at a particular attraction which means the

user has less time to spend at other attractions in the city.

 74

To meet the above requirements, when constructing a guided tour of the city, the path

finder attempts to quantify or evaluate the quality of a tour by allocating numeric

values to attractions and routes between attractions. These values are influenced by

both the current context (weather, time etc.) and the user‟s preferences and tours can

be ordered by comparing their total scores. In more detail, the system dynamically

generates a full set of tours that encompass the attractions requested, produces a total

score for each permutation and then recommends to the visitor the tour with the

highest score (i.e. most suitable).

In addition, the system incorporates a number of “tricks” to try and improve a given

tour‟s overall score. For example, consider the following scenario. It is 9.30am and a

tourist has just picked up a GUIDE unit from the TIC. They ask the system to

generate a day-long tour that takes in just two places, a nearby museum (which opens

at 10.30 am) and a park on the other side of town. The system recognizes that the best

order is to visit the museum first and then spend the afternoon in the park and will

suggest “padding” activities (e.g. nearby cafés, exhibitions or related landmarks) to

occupy the visitor until the museum opens. The tour-guide generation system uses the

geographic (object) model described in section 3.4, with each location object storing a

range of scores reflecting the appropriateness of visiting that location for a particular

set of context inputs. A detailed flowchart and pseudo-code algorithm describing the

tour creation process is shown appendix C. It is worth noting that the solution

described above offers a relatively simple pragmatic solution to the problem of

dynamic context based route finding. Although the solution works well for the

relatively small amount of context modeled by the GUIDE system, it is clear that the

problem could obviously scale up to a large AI problem if based on accurate models

of the environment.

3.6 The GUIDE User Interface

The GUIDE user interface (as illustrated in figure 3.17) is based around a modified

browser metaphor. This decision was made for two reasons. First, the metaphor

closely matches the kind of information modelled in GUIDE, i.e. the notion of

following hypertext links in order to access greater levels of detailed information

about a particular attraction or event within the city.

 75

Second, the browser metaphor was based on the growing acceptance of the web and

the increasing familiarity of the metaphor as a tool for interaction. It was hoped that

positive transfer from the use of common web browsers would help make the system

both easy to use and easy to learn for users with previous web experience. However,

we also wanted to ascertain the extent to which the basic metaphor would be

appropriate for the task of supporting the additional context-aware based functionality

required by GUIDE. More specifically, we wanted to investigate the extent to which

differences and inconsistencies with the standard would prove confusing to users.

Figure 3.17 - The GUIDE user interface

In order to help the system appear more approachable to visitors the idea of using a

buddy was adopted to give the GUIDE system a friendly personality. The initial aim

was to extend this feature to include a number of themed characters, similar to those

found in Microsoft Office, for example a medieval tour guide or a Victorian tour

guide. This decision was based on the observation that, in general, novice users will

find a computer-based interactive system more approachable if it is perceived as

having a polite and friendly personality [Oberlander,97]. However, as users become

more expert with using the system then this approach may become less appropriate.

Other user interface design decisions included considering the use of a multimodal

user interface, e.g. one in which information and navigation instructions could be

delivered to the user using speech output [Cheverst,01b]. However, following

discussions with staff at the city‟s TIC, this approach was not pursued. The main

reservation was based on the fact that GUIDE is designed for outdoor pedestrian use

and concerns were raised relating to visitors being distracted by the system when

crossing roads if the system chose that time to deliver information. Following on from

 76

this point, in general we have reservations about the effective bandwidth of voice for

information transfer and the extent to which users can control the pace of information

delivery with a speech-based system.

3.7 Application Functionality: Some Scenarios

3.7.1 Overview

The GUIDE system provides city visitors with a wide range of functionality: a visitor

can use their GUIDE unit to access context-aware information, create tailored tours of

the city, access interactive services, and send and receive text messages.

Figure 3.18 - Choosing visitor preferences

When the application is first initialised, a new representation of the city of Lancaster

is created. Following this, the user is prompted to enter their visitor preferences

(using a wizard similar to that shown in figure 3.18). Once the user has specified their

interests the system welcomes them to the city of Lancaster (see figure 3.17).

3.7.2 Accessing Context-Aware Information

A visitor can use GUIDE to retrieve web-based information based on their current

context, e.g. location and user preferences. In addition, the system also enables

visitors to access web pages in a non context-aware manner. More specifically, by

following hypertext links visitors have general access to the World Wide Web.

In order to retrieve information the visitor can tap the „Info‟ button and this will cause

a set of choices to be presented in the form of hypertext links. Figure 3.19 shows the

 77

choices that would be available if the visitor happened to be located in close

proximity to the tourist information centre (TIC).

Figure 3.19 - Accessing information using GUIDE

It is important to note that not all the options are based on the visitor‟s current

location. For example, the visitor is provided with the ability to search for information

using a keyword search facility, irrespective of their current location. Early versions

of the system did not offer the search facility and in effect restricted the scope of

information available to a visitor to that closely related to the visitor‟s location.

During an expert walkthrough of the system it became apparent that constraining the

visitor‟s access to information based on their location can be very frustrating for the

visitor if the information they require cannot be accessed because we did not deem it

to be of sufficient relevance to the area concerned [Cheverst,00b].

On a more general point, our experience with this aspect of the system has taught us

that designers of context-aware systems must not be over zealous when deciding to

constrain the information or functionality provided by the system based on the current

context. The difficulty of pre-empting the user‟s goal is further highlighted when

considering the situation where the visitor selects the third option in order to view a

list of nearby places of interest. When presented to the visitor, the list is sorted in

such a way that those attractions that are open, and have not already been visited, are

placed higher up the list. The assumption is made that the visitor is more likely to be

interested in attractions that are open and that have not already been visited. An

earlier version of the system constrained the output by removing all closed attractions

from the presented list. However, this frustrated some visitors who were interested in

 78

visiting the attraction anyway, e.g. to view the architecture of a building

[Cheverst,00b].

3.7.3 Create a Tailored Tour of the City

The GUIDE system is designed to enable visitors to request a structured tour of

Lancaster based on a set of attractions that they wish to visit. In order to ascertain this

set of attractions, visitors are asked to choose any number of pre-defined tours of the

city or select attractions from a set of categories such as „Historic‟ and „Recreation‟.

The first option was added after an initial evaluation with a small number of visitors

to the city. It was found problematic to ask visitors themselves to choose attractions

to be included in their tour since they did not necessarily appreciate what was special

about the city of Lancaster or have an appreciation for the relative distances between

attractions. For example, everyone would like to drink stout when in Dublin even

though they might not do so at home. For this reason, we included pre-defined tours

and a „Popular Attractions‟ category to aid visitors in their choice of attractions to

visit.

Once a tour has been successfully generated (see appendix C and [Davies,01]) for

more information), the visitor is presented with a recommended sequence for visiting

their chosen attractions. The visitor can then agree to be taken to the next attraction in

the suggested sequence or override this recommendation by selecting a different

attraction to be their next destination. A structured tour is broken down into a series

of distinct stages. Once completing each stage, users may request the system to

describe the next stage of the tour by touching the „show next instruction‟ button.

Stages in the tour are described using a navigation instruction. These instructions

provide the visitor with a piece of text explaining in some detail how to get from their

current location to the next attraction in the tour, as shown in figure 3.20.

 79

Figure 3.20 - The presentation of navigation information

It is important to note that, given the same set of attractions, the ordering of the tour

recommended by the system can actually change dynamically. This can occur when,

for example, a visitor stays at a location longer than anticipated or if one of the

attractions announces that it will close early. The system regularly calculates whether

or not the current order for visiting the remaining attractions is appropriate given

current time constraints.

3.7.4 Access Interactive Services

By providing remote access to interactive services, such as the booking of hotel

accommodation, visitors can save time by making bookings via their GUIDE unit. In

addition to providing remote access to services provided by the TIC, the GUIDE

system also enables access to other services, such as enabling visitors to query films

on show at the local in addition to enabling visitors to reserve seats remotely.

Figure 3.21 - GUIDE interactive services

 80

3.7.5 Send and Receive Messages

The messaging service enables groups of visitors, who may have separated in order to

visit different attractions in the city, to keep in touch and also enables visitors to

request information from staff at the TIC. Similarly this service allows members of

the TIC to send out announcements to all users of the system, as shown in figure 3.22.

Figure 3.22 - GUIDE messaging service

3.8 Conclusion

This chapter has focussed on the work carried out during the GUIDE project and has

detailed the design and implementation of a prototype context-aware application built

to satisfy the requirements of tourists to the city of Lancaster. In addition, this chapter

has also provided a number of insights relating to the challenges involved in

deploying a city-wide wireless network and a prototype context-aware application

designed for use in a mobile environment. The GUIDE prototype has acted as the

author‟s main research vehicle for investigating the area of mobile context-aware

computing and chapter five analyses the GUIDE approach more closely to identify a

number of shortcomings regarding the approach presented in this chapter. This

analysis is used to inform a set of requirements which in turn act as the basis for the

more general service based approach to context-aware application design described in

later chapters.

 81

Chapter 4

Requirements and Design For A

Context Service Based Architecture

4.1 Introduction

This chapter describes the design of a context service designed to provide support for

building mobile context-aware applications. The context service demonstrates a

flexible and dynamic approach to supporting both application development and

operation within mobile environments. More precisely, the context service is

designed to provide the application programmer with a convenient mechanism for

supporting mobility and application extensibility through an appropriate layer of

abstraction between applications and infrastructure.

The chapter commences by presenting a general set of requirements used to influence

the design and implementation of the context service based architecture. The

requirements are derived through an analysis of the related work detailed in chapter

two and by means of a reflective critique of the GUIDE implementation presented in

chapter three. This analysis highlights the primary limitations present within the

research field in general and the GUIDE prototype when considering mobile

environments. Following this, the overall architectural features and computational

 82

objects relating to the context service are described before chapter five goes further to

consider the context service from an engineering perspective in order to detail the

implementation and protocols incorporated into the context service. Chapter five

concludes by describing a number of context-aware applications designed using the

architecture.

4.2 Analysis and Requirements

4.2.1 Overview

This section uses observations obtained from chapter two in addition to an analysis of

the GUIDE prototype, as presented in chapter three, to establish a generic set of

requirements for supporting context-aware applications within mobile environments.

The primary objective of this analysis is to identify the core architectural features

required by a context service to better facilitate context-awareness within dynamic

environments. The analysis is also motivated by the results obtained through a user

field trial evaluation of the GUIDE prototype [Cheverst,00a] and extensions to the

application functionality [Cheverst,00d].

4.2.2 Requirements for a Context Service

4.2.2.1 Overview

Chapter two focussed on two main areas of research, the impact of mobility on

application design and current approaches to developing context-aware applications.

The author argues that application developers must be aware of the issues relating to

both of these areas of research in order to successfully author next generation adaptive

mobile applications. The reason for this is twofold. First, the requirement for

supporting mobile users coupled with the increasing range of available context

sensing technologies establishes the need to support location based services in

addition to user mobility. Indeed, current telecommunications operators are investing

heavily in their next generation networks to allow access to location (context) based

services from a variety of mobile handsets [BT,01]. Similarly, work in the area of

context-aware computing will increasingly focus upon user mobility as a valuable

form of context since to a large extent it is possible to make a significant number of

 83

assumptions pertaining to user activity based purely on location. Therefore, the

amalgamation of issues which pertain to both fields of research will be vital to the

support of context-aware applications aimed at mobile environments. The

requirements will be presented within the broad categories of systems support for

mobile and context-aware systems.

4.2.2.2 Requirements for Mobile and Distributed Systems Support

R1: Supporting User and Device Mobility

Chapter two described how research has generally focussed on two primary types of

mobility. The first involves both user and computing device mobility, for example, a

field engineer using a pen-tablet and working on the move [Friday,99]. The second is

more in accordance with the ubiquitous computing vision [Weiser,93] involving a

mobile user utilising a richly equipped fixed networked environment (i.e. only the

user is mobile [Harter,99]). Within a heterogeneous processing environment both

these forms of mobility may coexist since users are likely to move between portable

and fixed devices during the course of a day.

Furthermore, support for mobility must be considered at a number of different levels

including the systems and the user interface level. Applications must be able to

withstand periods of disconnection and perhaps offer levels of service during periods

of disconnected operation [Cheverst,99a]; however, feedback pertaining to the state of

the environment must also be supported as described further in requirement R13.

R2: Support Persistence of Application and User State

The GUIDE prototype described in chapter three does not adequately support users

within a heterogeneous processing environment. More specifically, users are unable

to initiate an application session using one device and continue that session using an

alternative device. Whilst the GUIDE client application maintains some state relating

to a range of environmental contexts including the user profile and the city

information model, this information is only stored locally on the mobile device and is

not made persistent (across sessions or devices) at run time or once the application has

terminated. This acts as a major shortcoming for the GUIDE prototype since the

 84

battery capacity of the Fujitsu TeamPad is such that it is only able to operate for up to

(at most) two and half hours when powering the wireless network card before the

batteries need replacing. The inability to make state persistent and retrievable whilst

batteries or devices are changed presents a limitation to the system since valuable

state may be lost. The inclusion of this functionality may enable a user (over a number

of application sessions) to construct a detailed user profile of their activities and better

facilitate sharing of personal context between sessions or other applications.

This highlights a strong requirement for providing system support for context-aware

applications capable of operating in a heterogeneous processing and networking

environment. Furthermore, applications should be capable of operating over different

hardware and networking infrastructures despite the varying levels of service that

these infrastructures afford.

R3: Support Flexible Interaction Models

Within a mobile distributed environment there exists a requirement to support a range

of interaction styles ranging from highly synchronous to asynchronous, since it is not

feasible to provide a one-size-fits-all approach to interaction between system

components. Moreover, since interaction and performance often fluctuate as users

experience varying levels of network connectivity, there is a need to consider the

balance between client, server and network loads since solutions must often be able to

accommodate low bandwidth wireless links, partially connected hosts, and variable

communication speeds and latencies.

When considering partially connected mobile hosts, information may often be out of

date. Therefore applications that make explicit requests for context changes trade off

the overhead of polling versus the timeliness of the information they receive

[Schilit,95]. More specifically, reducing the interval between successive polls lowers

the time taken for an application to see a context change at a server, although one

drawback of polling is that it may generate unnecessary network traffic when

information changes infrequently.

These issues were, to some extent, overcome by the broadcast approach described in

section 3.3.3, which is able to accommodate a large user community per wireless cell

 85

[Cheverst,01d]. However, the use of broadcast increases the load in client-side

processing since all incoming communications requires filtering in order to establish

relevance to the receiving mobile host. An approach based on the publish-subscribe

paradigm limits the extraneous network traffic created through polling through the use

of callbacks from servers to clients. However, maintaining the callbacks may add

complexity to system components.

R4: Security and Privacy of User Data

The security and privacy of user data must be guaranteed. Since there is likely to be

an increase in the number of systems that continuously monitor context from various

sensors or repositories, controlled access to data pertaining to the whereabouts of a

user and their activities will be required for users to feel comfortable about making

this personal information available [Brown,00b], [Schmidt,00]. For example, during

an extension to the GUIDE prototype, tourists were able to share their location

context with other users of the system to facilitate collaboration [Cheverst,00d]. This

information can then be used, for example, by a tourist when trying to make a

decision as to where to have lunch. Tourists are able to communicate with other

tourists shown to be in (or who have previously been in) restaurants or cafés that day.

This scenario highlights the requirement for suitable access control mechanisms or

policy adaptation techniques [Efstratiou,00] in order to enable context use without

compromising user privacy. Moreover, as Brown et al [Brown,00b] point out, each

user must have control over information relating to themselves, and must be free at

any time to change the accessibility of the information or the information itself.

Furthermore, the ways in which an application uses information must be clear to users

[Cheverst,00d].

R5: Extensibility

Applications aimed at operating in mobile distributed environments must be

extensible in order to accommodate change and enable applications to adapt to new

environments. Within the context of the GUIDE prototype, the introduction of new

hardware, such as a new location mechanism, cannot be easily achieved. In more

detail, the initial GUIDE prototype makes use the ORiNOCO wireless network for

providing users with location information. At best, this provides relatively coarse

 86

grain accuracy in terms of cells, that is, users are only able to determine which

geographic region of the city they are located in. During a field trial evaluation of the

GUIDE system [Cheverst,00a] it was discovered that at certain points of a city tour

additional finer grained location information, such as data gathered from a GPS

device, could help tourists with navigation. Furthermore, supplementing the

infrastructure with indoor location technologies such as Active Badges or Bluetooth

devices could enable tourists to continue using the system and follow internal tours of

museums and other tourist landmarks [Davies,01].

These usage scenarios highlight a similar limitation to that found with the CyberGuide

project [Long,96]: More specifically, a tight coupling exists between the GUIDE

application and the hardware infrastructure on which it is based. Consequently,

should an alternative location technology become available during an application

session, such as a GPS or Bluetooth based service, the system is unable to re-bind or

make use of this service.

To overcome this problem and allow the system to be extended more readily, a

requirement exists to support a more general mechanism which removes the tight

coupling that currently exists between applications and infrastructure.

R6: Modelling the Environment

As the move toward the ubiquitous computing vision first described by Weiser

[Weiser,93] continues, the ability to facilitate complex interactions between users and

device‟s will necessitate more than the devices capability to sense and adapt to

contextual information. Improved user models (e.g. user profiles, social protocols)

and environment models (e.g. location or geometric world models) will be required to

supplement next generation intelligent applications [Cheverst,01c]. Work on

geometric world modelling as part of the Microsoft EasyLiving project [Brumitt,00a],

location models proposed by Leonhardt [Leonhardt,98] and Jose [Jose,01b], and the

work on Active Spaces [Román,00] provide evidence of a successful shift toward

ubiquitous computing. However, currently there exists no unified approach to world

modelling and existing approaches suffer from similar drawbacks to those mentioned

in requirement R5.

 87

R7: Management of Shared and Distributed Data

The issues which pertain to information residency, retrieval and access to distributed

data pose interesting challenges. First, in mobile environments which consist of both

static and mobile elements there is a need to locate data (e.g. context, user data) and

computational resources (e.g. services, functionality). For example, based on resource

availability, a distributed system may choose to migrate some computation or data to

a different processor [Gray,96]. This poses the question of where data should reside.

In most cases this may depend upon the type of data in question, for example, sensed

context is unlikely to reside on the device itself due to the physical constraints placed

upon the device. In this case, proxies or services may be responsible for maintaining

and controlling access to this type of data. A second question which arises in relation

to user data is whether this information should be stored locally [Cheverst,99a] or

stored in a central (trusted) repository and be accessed remotely by mobile clients

using a secure channel [Schmid,01]. This may be particularly pertinent when

considering user data, such as a working set of files, where the data is perhaps more

sensitive to its user and a sense of ownership exists [Brown,00b].

Finally, when considering interactive or collaborative applications [Dix,99a] more

dynamic distribution of data may be more appropriate and may require adaptive

interaction models (requirement R3). The issue of data management is difficult to

address since, in most cases, the method of data residency is determined by the

specific application domain [Brown,00b]. For example, in the PARCTAB experiments,

the tabs essentially act as user interfaces to remote data services since the indoor

communications technology adopted provides good coverage. However in an

environment with poor or variable communications coverage such an application may

require locally cached data in order to offer adequate levels of service to its user

[Davies,99].

R8: Configuration and Interoperability

Several factors influence the need to support resource discovery within mobile

environments. First, as a user roams, mobile applications often have functionality

distributed across an environment and frequent changes to the availability of these

distributed entities is highly likely. Second, applications often exploit resources

 88

within the immediate vicinity (local domain), for example, printers and network file

spaces [Nelson,98]. Access to these resources are likely to be dynamic due to

changes in the device that runs the application, particularly its physical location. It is

therefore necessary for applications to automatically update service information when

their context changes. Finally, from a user perspective, the ability for ad hoc

discovery of other users, based upon context, increases the likelihood of chance

encounters [Izadi,00a]. It is known that chance encounters, that is, the unscheduled

meetings between people that occur in such places as corridors, are crucial to the

functioning of organisations [Backhouse,92], [Eldridge,00].

A dynamic discovery mechanism should include support for all aspects of the

discovery life cycle presented in chapter two, namely, announcement, discovery,

description, configuration and interoperability. Furthermore, discovery based solely

upon physical location (used in current discovery technologies) may be a constraint in

context-aware environments. Therefore, it is essential to support discovery based

upon other forms of contextual information such as a user‟s interests or their current

activity. A dynamic discovery mechanism with these capabilities is more general than

current solutions (e.g. discovering a nearby printer) since it facilitates the discovery of

contextual entities (i.e. users or services) based upon more than just physical location.

4.2.2.3 Requirements for Supporting Context-Awareness

R9: Context Capture

Chapter two described how location, orientation and identity have traditionally acted

as the basis for a large number of context-aware applications [Abowd,99]. This

informs a requirement to support a wider variety of contexts sensed from both the

physical and virtual worlds. Physical context includes anything that can be sensed by

hardware devices such as GPS devices [Garmin,01] or weather sensors [iButton,00b].

Virtual context refers to context obtained through the use of software components, for

example, monitoring keyboard activity, processor load or documents currently open

[Izadi,00b].

 89

R10: Context Interpretation

For applications to successfully utilise context in a meaningful way, interpretation of

context sensed from the environment may first be required. For example, consider an

application that makes a request for a notification when a meeting is taking place

[Dey,99b]. Location information could be sensed from the environment and

interpreted to determine user identity or location and to check co-location. In

addition, information such as user orientation and sound levels could be combined in

order to determine that a group of people are in face-to-face contact and that a

meeting is taking place. From an application developer‟s point of view, this

interpretation should be transparent since a notification of when a meeting is taking

place is all that is required. If an application developer is forced to handle the

interpretation at the application layer the ease in which the interpretation is reusable

by other applications is reduced. For example, a change in the underlying hardware

used to gather context, such as the use of video for user recognition instead of

orientation and sound, would require that each application would have to re-

implement the context interpretation component.

R11: Infrastructure Transparency - Separation of Concerns

Mobile context-aware applications must be able to utilise a wide range of computing

devices, heterogeneous communications and sensing technologies and offer services

irrespective of the underlying infrastructure. The author believes that to a large extent

the problems of tight coupling that currently exists between applications and the

enabling technologies [Long,96], [Davies,98b] have had a limiting affect on the range

contexts used within applications. Since software is written for sensors on an

individual basis [Dey,99b] and often with no common structure between them,

application designers wishing to make use of particular sensors employ ad hoc and

application specific design techniques to integrate them into their applications. As a

consequence this makes them both difficult to maintain and significantly reduces the

ease to which new sensors (and therefore context) can be added. One possible

outcome of this approach is that applications tend to use context in a limited way (e.g.

just location and identity) at any one time. To facilitate a wider use of context

(requirement R6) there needs to be a layer of abstraction between applications and

underlying infrastructure [Izadi,00b]. The provision of a layer of abstraction enables

 90

applications to be device, operating system and communications medium agnostic.

Furthermore, the ease of which applications can be evolved or extended will be

increased since changes to the underlying technologies will not adversely affect the

operation of higher level applications or system components.

R12: Presentation, Adaptation and Persistence of Context

There are a number of ways in which contextual information can be exploited by an

application. These include:

 Presentation: A common way to exploit contextual information is to process

it in to a suitable form, perhaps by summarising the data, and displaying it to

the end user. The reason for this approach is twofold. First, the context may be

of interest to the end user, for example, the location of a friend that is currently

out of the office. Second, the user may require the context in order to operate

the system correctly. As [Dix,95] states “people are very adaptable and, given

suitable information about what is going on, they are often able to solve

problems themselves”. To highlight this, consider a person carrying a mobile

telephone; by providing feedback (i.e. awareness) relating to the current

network status, users are able to appreciate that they may or may not be able to

make/receive phone calls given their current context.

 Adaptation: Adaptation to context refers to situations where an application

itself exploits the contextual information to determine the data services to

provide to the end user. The adaptation approach is particularly beneficial to

mobile applications, where applications must base their current semantics

upon the user‟s context (often defined by the user‟s location and profile). The

GUIDE system presented in chapter three demonstrates an instance of this.

This system is of minimal use when it displays a global set of information

since one could argue that a written document containing the same information

is equally useful. However, the context sensitive nature of the systems offers

considerable benefits since more precise tour content is possible based on end

user location [Davies,98b].

 Persistence: Exploiting contextual information through persistence involves

awareness information being gathered from the environment and stored for

 91

later retrieval. Persistence can be exploited by applications themselves to infer

new knowledge or establish trends. Returning to the tour guide application

again, here, information regarding locations of users can be persistently stored

and later utilised to determine the popular sites within the city and information

that is often requested at those sites.

Table 4.1 categorises the systems and applications described in the previous chapter in

terms of the context types supported and how that context is utilised. The context

types presented include Activity, Identity, Location, and Time. For the use of context

the three main features are described Presentation, automatic Execution, and storage

for later Retrieval.

System

Context Type Context

Use

A I L T P E R

Active Badge Call Forwarding X X X X

FLUMP X X

CyberGuide X X X

Teleporting X X X X

CyberDesk X X X

Audio Aura X X X X

AROMA X X X

Stick-E Notes Guide X X X X X

Stick-E Notes Reminders X X X X

Forget-Me-Not X X X X X

Satchel X X X

Table 4.1 - Summary of context types and context use

This table illustrates that there is a requirement to support various types of context and

that context use is necessary at many different levels.

R13: Ability To Support Awareness

The supply of context information (awareness) to users, applications and other system

components is intrinsic to mobile and context-aware computing. Awareness can be

described as the antithesis of transparency in that it is concerned with the supply of

information to system components as opposed to the masking of it [Dey,99b]. For

applications to adapt successfully feedback pertaining to the state of the operating

environment is essential. An example of this is presented in MOST [Friday,99],

where it is shown that by making users aware of the identity of group members

experiencing poor communications QoS prevents group members from being forced

 92

to make potentially false assumptions regarding the current state of connectivity with

a group of collaborative users [Dourish,92].

Within the context of the GUIDE system, user preferences, location information and

environmental factors such as weather predications and attraction availability act as

forms of context. Sensing of these contextual attributes is distributed throughout the

environment, for example, location updates are received locally through the

GuidePositionSensor interface and context such as weather is gathered remotely

and dispatched as events. The distributed nature of the system could be exploited

further to provide users with awareness of other users of the system and perhaps their

device capabilities. Consider the scenario in which a family group are visiting the

city. Here, the parents of the family may be equally (if not more so) interested in

knowing the whereabouts of their children in addition to their own location. A further

requirement for supporting device awareness was derived when the GUIDE system

was extended to allow collaboration between users using different mobile devices

[Cheverst,01d]. Here, a user of the system who gains access through a WAP interface

(see section 6.2.5.3) has access to similar functionality despite their device constraints

(i.e. paying for communications using a mobile phone) does not originally have these

constraints reflected at the user interface level. That is, two communicating users

within this system would not be aware of the other users constraint‟s.

R14: Ability To Support Context Sharing Across Applications

The GUIDE prototype was originally designed as a stand alone mobile application,

although during the user evaluation it became apparent that a user‟s context (user

model) could be re-used or shared across a number of applications. Consider a visitor

to the city who is hoping to visit a number of the city‟s attractions in addition to

attending a business meeting in the city. There would be a clear benefit to the user if

a range of applications (such as a calendar application) had access to the same

environmental context. Thus, for example, events received through the GUIDE

infrastructure relating to attraction availability or traffic announcements could be

accessed by a calendar application and used to automatically re-schedule

appointments or notify clients of any perceived delays.

 93

Moreover, there exists a requirement for supporting shared access to application

functionality in addition to sharing state, for example, the functionality afforded by

the location sensing and the tour guide components found as part of the GUIDE

prototype could easily be incorporated into other applications that may require

location awareness and navigation services.

R15: Specification and Representation of Context

Future context-aware applications will make use of a wide array of computational,

communication and sensing technologies. To enable applications to successfully

evolve and make use of new technologies, applications must be easily maintainable

and extensible (requirement R5). To achieve this, work on standardising common

representations for context is required. This could be considered a natural extension

to current efforts within the UPnP forum whose members are aiming for a similar goal

and trying to establish standard device descriptions for a wide range of devices,

particularly audio and video devices [Microsoft,99]. Within this domain, the

agreement of common device descriptions and protocols between hardware

manufacturers will enable applications and services to operate seamlessly across a

number of environments (e.g. home audio/video networks).

The integration of different hardware devices is the first phase towards establishing

ubiquitous or smart environments. To facilitate the integration between different

context-aware systems, which is currently difficult or impossible, a similar approach

is required. Context is currently represented and handled in a bespoke manner

[Dey,99a]; however, Ryan [Ryan,99] has proposed ConteXtML, a simple XML based

protocol for exchanging contextual information, field notes and map data between a

mobile client and a server. Similarly, Byun et al [Byun,01], in an extension to the

Lancaster GUIDE system, have recently proposed a two-layered XML DTD based

approach for representing context, in order to support the interoperability of context

between independently developed context-aware applications. This approach allows

the flexible adoption of a separate DTD for each application domain as well as

common definitions of context types that may be shared.

 94

4.2.2.4 Overall Analysis

This section has described the key requirements for supporting context-awareness

within mobile or distributed environments (summarised in table 4.2 below). The

requirements have been established through an analysis of the related work detailed in

chapter two and a critique of the GUIDE system presented in chapter three.

Requirement Mobile Context Awareness

R1: Supporting User and Device Mobility

R2: Support Persistence of Application and

User State

R3: Support Flexible Interaction Models

R4: Security and Privacy of User Data

R5: Extensibility

R6: Modelling the Environment

R7: Management of Shared and Distributed

Data

R8: Configuration and Interoperability

R9: Context Capture

R10: Context Interpretation

R11: Infrastructure Transparency

R12: Context Presentation, Adaptation and

Persistence

R13: Ability To Support Awareness

R14: Ability To Support Context Sharing

R15: Specification and Representation of

Context

 = full support. = some support. = no support.

Table 4.2 - Analysis of state of the art

The analysis has highlighted a number of limitations, which largely focus on the lack

of application flexibility for supporting operation within heterogeneous environments

and the inability to share context between applications. The requirements point

towards the need for a more general approach to supporting context-aware application

design better suited to mobile environments and one which reduces the coupling

between applications and infrastructure. The primary goal of such an approach is

application flexibility and, by employing a separation of concerns between

applications and infrastructure, better support for operation in a rapidly changing

execution environment can be achieved.

Furthermore, the related work presented in chapter two and table 4.1 can be used to

show how, in general, there exists an overlap in the types of context utilised by

applications, that is, traditionally, location, identity and activity form the basis for

context-aware behaviour. However, there is currently little or no potential for

 95

exploiting these commonalities to enable applications to share context or successfully

operate in alternative environments or configurations, other than their initial target

domain.

This observation shows that many context-aware applications share common, generic-

application requirements, such as access to specific types of context or functionality.

Therefore, an approach that provides shared access to low level services may benefit

context-aware applications. Furthermore, in addition to generic requirements,

applications are likely to have a set of application-specific requirements. As an

example, consider a system that makes use of a location service for providing

positional information to an application. A service based on GPS could clearly be

easily re-used by several different applications, however, one instance of an

application may require that longitude and latitude data be converted into an

alternative format before use [Izadi,00].

The author believes that in order to withstand a fluctuating operating environment,

mobile context-aware applications must be designed with mobility in mind

[Demers,94]. To support this, a suitable access mechanism to the underlying

infrastructure can be generalised in order for application developers to avoid the

burden of designing applications with specific hardware or changing target domains in

mind. By providing a suitable mechanism for enabling applications to explicitly state

their contextual constraints (i.e. interests and attributes), more dynamic applications

can be created that better suit the frequently changing environment in which they

reside. Furthermore, by exploiting user and device awareness and allowing controlled

access to context information, the sharing of context can be achieved which, in turn,

facilitates the development of collaborative mobile applications.

Therefore, to summarise, by providing an appropriate layer of abstraction between

applications and infrastructure, context-aware applications will have the benefit of

increased support for user mobility, mobile awareness, context sharing and flexibility

with respect to a heterogeneous processing environment. Furthermore, providing a

more flexible approach and removing the burden of having to deal with a wide range

of issues incidental to the development of applications, more applications can be

realistically deployed and evaluated in settings outside of the research laboratory.

Only through the rapid development and experimentation with context-aware systems

 96

can exploration into issues relating to the use of these systems in real settings be

established in order to further advance the research field in general.

4.3 A Context-Service Based Architecture

4.3.1 The Need For Context Services

Based on the requirements specified in the previous section, the remainder of this

chapter argues the need for more appropriate, that is dynamic, support for context-

aware applications within mobile environments, before detailing the design of a

prototype implementation context-service based architecture. The analysis of the

related work and critique of the GUIDE prototype implementation act as useful

pointers towards identifying the support required by a context-aware architecture for

use in mobile environments. More specifically, it is clear that any context-aware

architecture must be capable of supporting the complex interactions that exist between

users and the context sensing infrastructure affording „intelligent‟ services. As a

result of the complexity relating to the use of context, so increases the difficulty when

maintaining and extending system functionality to include support for new forms of

context.

Therefore, the primary role of any context-aware architecture must be that of

simplification, i.e. simplification in terms of creating, maintaining and using context

at the various levels (especially the application level and infrastructure level). By

applying well understood object oriented principles to the development of context-

aware applications and creating self-contained contextual entities, or services, with

well defined interfaces, there exists an immediate increase in the ease in which

components can be maintained or constructed [Franz,98].

Facilitating access to functionality through service interfaces and pushing these

services into the infrastructure shifts much of the weight of context-aware computing

into the network-accessible distributed environment [Hong,01]. Moreover, by

creating uniform abstractions and reliable services for commonly used operations,

service infrastructures make it easier to develop robust applications targeting a diverse

and constantly changing set of end-systems.

 97

In addition, an architecture based on context services simplifies the process of

incrementally deploying new sensors, devices, or services. Furthermore, in terms of

scalability, services should be able to scale up to support a potentially large user

community [Davies,98a]. In addition, the use of services as an abstraction mechanism

over the underlying technologies removes the burden of context acquisition from

individual applications. Finally, this abstraction enables application designers to

develop applications and supporting services independently since no direct

relationship exists between application design and the infrastructure on which they

reside.

To summarise, the notion of services is a well understood principle in distributed

computing [Microsoft,01c] and one which suits the dynamic nature of mobile context-

aware computing. Through the use of context services, a level of abstraction and

flexibility is provided to application developers capable of supporting the following

features: to be flexible enough to operate within a range of application domains, to

support multiple applications accessing the infrastructure simultaneously, to reduce

the burden of designers of context-aware applications, and to facilitate the use of

arbitrary context types.

4.3.2 Introduction and Motivation

The approach detailed throughout the remainder of this thesis aims to achieve the goal

of application flexibility for context-aware applications within mobile environments

and support incremental development using a separation of concerns between context-

aware applications and supporting infrastructure, as shown in figure 4.1. In essence,

this separation of concerns can be used to provide a standard interface to the

underlying infrastructure and to facilitate the sharing of context services between

applications. As a result, application developers are able to more readily build, deploy

and evolve complex dynamic applications with the following properties: to allow a

user to work and move between devices during the course of a day, to maintain a

consistent view of the state of their environment irrespective of device or application

being used, and to include support for application adaptation and state management in

relation to a changing execution environment involving the discovery and utilisation

of new services.

 98

Infrastructure

Service Based

Architecture

Application

Adaptation

Application

Sensor Hardware

Adaptation

Awareness

Awareness

Awareness

Adaptation

Figure 4.1 - Layer of abstraction

The approach shows how through the use of context constraints, typing and discovery

the coupling between the application and infrastructure is reduced resulting in

applications with greater flexibility. Furthermore, users are provided with greater

levels of control. For example, consider a scenario in which several similar services

(e.g. location) each with different properties (e.g. accuracies, power constraints) are

available. In this case users may decide which service to use based on their current

context.

The remainder of this chapter defines the properties of the service based architecture

to support mobile context-aware applications. In particular, the major concerns for

the research presented in this thesis are:

 Flexibility: To enable applications to adapt to use across a wide range of

heterogeneous devices and execution environments, that is, independent of the

underlying infrastructure or physical environment.

 Evolution: To aid application evolution and extensibility by using a separation

of concerns between using context and the underlying infrastructure.

 Partial Connectivity: To enable context-aware applications to operate

successfully in mobile environments even during periods of disconnected

operation and to make use of techniques such as dynamic discovery to utilise

new context services.

 Context Awareness: To build upon the notion of mobile awareness

[Cheverst,99b] and facilitate the awareness of users, devices and services

across a range of heterogeneous devices and mobile environments and to

 99

support the sharing of contextual sources between application processes and

instances.

4.3.3 A Context-Service Based Architecture: Overall Approach

The overall approach is based on the system architecture shown below (see figure

4.2). It is assumed that a fixed backbone network model is present that connects a

number of interconnected cells or sub-networks, that is, a trusted network

infrastructure consisting of fixed networks and hosts (fixed or mobile) with reliable

communications via the backbone network. For the purposes of this thesis, self

organising or ad hoc networks are not considered [Hodes,97]. These assumptions

enable the communications between system entities to be simplified. In essence, a

number of mobile nodes may exist within a wired or wireless sub-network. Access to

the context service architecture gained through the network involves a context server.

Furthermore, the central context repository acts as a trusted and reliable repository for

all information (state) relating to applications and their sessions (see section 5.2.1).

More specifically, the central context repository acts as remote storage where data

may reside after an application has terminated.

Central Context

Repository

Wireless Cell

Context Server

(Wired Access Point)

Context Server

(Wireless Access Point)

Context Server

(Wireless Access Point)

Mobile Units

Figure 4.2 - Overall system architecture

In terms of the software components, the system consists of two main entities, shown

in figure 4.3. First, there is the context service provider (CSP) which in turn makes

use of any number of lower level context services (abstract, translation or bespoke).

The CSP acts as an application agent and is responsible for managing context

pertaining to executing applications on that device, the discovery of new context

services and the management of state to support operation during periods of

disconnected operation.

 100

Generic Context Services

Bespoke Context Services

Context Translators

Context

Service

Provider

Event

Manager

Applications

State

Manager

Context

Manager

Context Discovery

Physical and Virtual Entities

Figure 4.3 - The components of a service based architecture

The following section formally introduces the components shown in figure 4.3

beginning with the lower level generic context services. The chapter concludes by

describing in detail the role of the higher level context service provider (CSP) and its

constituent entities the context discoverer and the context, state and event managers.

4.3.4 Context Services

4.3.4.1 Overview

A context service represents any entity that is capable of providing contextual

information to the rest of the system and represents an abstraction over the underlying

infrastructure, which may consist of both physical and virtual entities. Physical

entities represent any hardware device or sensor that provides context to a system

component, for example, a temperature sensor. Virtual entities represent software

components such as keyboard or power consumption monitors [Efstratiou,00]. In

essence, these are bespoke entities with ill-defined interfaces and no standard

communications protocol. The requirement for supporting the re-use of context

services led to the notion of supporting both generic and application specific services

(see section 4.2.2.4).

 101

4.3.4.2 Abstract Context Services

Abstract context services provide system components with well defined interfaces and

standard communications mechanisms to the underlying physical and virtual entities.

In essence, abstract services act as wrappers to the underlying infrastructure and

provide a way of hiding the specific implementation details from application

developers. This allows developers to use a service, such as retrieving information

from a sensor, without being overly concerned with how the data is collected from its

source. Furthermore, abstract services include a number of context management

features including storing the services‟ current and previous context (state),

mechanisms for receiving subscription requests for contextual events and being able

to respond to queries for context state.

To highlight the usefulness of abstract services, consider a scenario in which an

application developer wishes to use a location device, for example the Garmin E-Trax

Venture [Garmin,01], to provide location awareness to an application. Through the

provision of a well defined interface allowing access to the state of the device, for

instance its current latitude and longitude co-ordinates, an application developer is not

burdened with having to know or realise a specific implementation in order to

communicate with the device (i.e. reading streams of data from a serial port and

interpreting them). By creating an abstract service and hiding the specific

implementation details an application developer can utilise the service more readily.

Furthermore, should the specific hardware device or method of context capture be

updated, no further effort is required by the developer since the service interface will

remain the same.

Abstract services offer two additional features. First, a service is able to store (make

persistent) context pertaining to that particular entity‟s history, perhaps for a later

retrieval [Spiteri,98]. For example, an abstract service representing a thermometer

could be used to determine the current temperature reading but may also be able to

offer a context-aware system the average temperature reading given a specific time

interval. Second, an application may subscribe to an abstract service for context

updates and avoid the need for periodic querying of a service‟s state. By subscribing

to a service for events, context updates are pushed out to all interested parties.

Abstract services therefore represent components that can be re-used and shared

 102

between applications. Figure 4.4 shows a number of example abstract services used

within the GUIDE II prototype detailed in chapter six.

Location Service

Device Specific

Communications

GPS DevicePhysical Device

Temperature Service

Device Specific

Communications

Heat SensorPhysical Device

Figure 4.4 - Abstract context services

4.3.4.3 Context Translation Services

Context translation services enable context to be transformed from, generally, lower

level (generic) context to higher level or more specific context. Consider the GUIDE

system detailed in chapter three as an example. This prototype makes use of beacons

to notify users of their location. However, the accuracy achieved is largely dependent

upon the city‟s geography and more importantly on the location of the cell servers.

This means that users are only able to determine their location in terms of their current

region of the city and not in terms of specific locations within that region. During the

development of the GUIDE II prototype [Cheverst,01d] (detailed in chapter six) the

approach based on location beacons was supplemented with a GPS approach in order

to provide more accurate positional information to users. This inclusion of this

functionality would normally require large modifications to be made to the original

GUIDE implementation to convert longitude and latitude co-ordinates into city

landmarks. However, by using a translation service for this task the prototype was

able to continue operating in its original manner while making use of the finer grained

location information and without a large re-write of the client application.

Furthermore, since the translation service is not actually part of the GUIDE

application its functionality may be re-used by any number of additional components.

Figure 4.5 illustrates the GUIDE GPS translation service based on the city centre of

Lancaster.

 103

GPS Location

Service

GUIDE Location

Service

Lat/Long to GUIDE

region translator

GUIDE Application X

Figure 4.5 - Context translation services

4.3.4.4 Bespoke Context Services

The notion of bespoke context services enables application developers to make use of

a variety of abstract and translation services to create specific functionality based on

their target application domain. For example, Cheverst et al [Cheverst,01a] describe a

service used to predict the likelihood of there being an impressive sunset over

Morecambe Bay on a particular day. Since Lancaster is located only four miles from

the west coast there are often spectacular sunsets in the bay area visible from a variety

of vantage points in Lancaster, namely Castle Hill and Williamson Park. The virtual

service was developed to predict the likelihood of there being a sunset based on a

variety of factors. The factors considered to calculate the probability of there being a

sunset included a user‟s location, their preferences, the time of day, current

temperature and weather information. If a high probability was ascertained then users

were notified and given the chance to visit the suggested vantage point. Figure 4.6

illustrates how a bespoke service may comprise of a number of abstract or translation

services.

Weather Service

Weather Time Temperature

%

Bespoke

Service

Figure 4.6 - A prototype context service

 104

4.3.5 Context Service Provider

The Context Service Provider or CSP can be regarded as an application‟s agent or

session manager and is responsible for providing a number of transparent context

management features to higher level applications. The main components of the CSP

are the context manager (CM), event manager (EM), session or state manager (SM)

and context discovery component, which are introduced in the following section.

4.3.5.1 Context Manager

The context manager is responsible for managing an application‟s contextual interest

and associated constraints. Applications register with the context manager specifying

their context requirements, that is, their user stipulated context constraints (see

appendix A) including required context types, security and privacy requirements. For

example, an application may require the use of a location context with an accuracy of

10m. After registration the context manager locates all the services that offer similar

features and ensures a match is found based on the constraints supplied. The

associated constraints include privacy and security primitives that can be used to

control how context is shared amongst applications. For example, within the context

of the GUIDE prototype there was a requirement to enable users of the system to

obtain location information relating to other GUIDE users, such as a teacher being

able to locate their pupils within the city. In addition, privacy constraints were

included so that users could be visible whilst remaining anonymous or be made

invisible by the system if they did not wish to be located at all. These mechanisms

provide a sound basis for exploring social awareness within mobile environments and

more importantly allow a user to maintain control over information relating to

themselves [Brown,00b].

4.3.5.2 Event Manager

The event manager is responsible for managing client subscriptions for contextual

events or updates. Applications may use either a query based pull or subscriber based

push mechanism for retrieving context from the environment. For example, a tourist

with an interest in a specific landmark, such as Lancaster Castle, could register for

updates ensuring that changes in context relating to that attraction are received by the

client application. The event manager maintains a handle to all the user‟s interested

 105

services and is able to discover and utilise new services based on the user‟s context

constraints (i.e. the types and attributes). The communications protocol used for this

component is based upon a modified and more general version of the broadcast

protocol described in section 3.3.3.

4.3.5.3 State Manager

The state manager is responsible for maintaining a consistent view of the operating

environment on behalf of client applications and is designed to overcome some of the

limitations presented in section 4.2. In more detail, the two important functions

supported by the state manager are session tracking and cache management.

Resources such as files or objects are stored locally (i.e. cached) during an

application‟s lifetime and made persistent after an application session has ended by

storing all data items in the context repository. This enables applications to

successfully operate during periods of disconnection using the local cache and allows

applications to detect the state of the environment once initialised from the persistent

store, that is, the central context repository. Furthermore, a particular resource and its

associated context can be used to aid cache management, that is, context-based

caching. In more detail, resources include context such as timestamps and expiry

information in order to define resource mutability and aid cache management. For

example, within the GUIDE application the time sensitivity of a resource varies

widely. A hypertext page relating to the history of a particular landmark may include

a timestamp indicating that this data item is unlikely to change frequently and can be

cached locally. Similarly, a hypertext page relating to a café‟s menu may change on a

regular basis (providing different breakfast, lunch, evening meal menus) and may

therefore be less useful to cache given that the resource is likely to be updated on a

regular basis.

4.3.6 Summary

This chapter has provided an analysis of the related work detailed in chapter two and a

critique of the GUIDE prototype implementation detailed in chapter three in order to

establish the architectural requirements for supporting mobile context-aware

applications. Following on from these requirements, the chapter then described the

 106

need for a context service based architecture and detailed how this mechanism

provides a solution capable of satisfying the identified requirements. Furthermore, the

architectural components of a prototype context service-based architecture were

introduced. This architecture has been designed to overcome the limitations derived

through an analysis of the GUIDE system whilst, simultaneously, building upon the

positive features of this complex application as described in chapter three. In essence,

the architecture focuses on providing a level of abstraction between a context-aware

application and the context infrastructure. As a result, this mechanism provides

enhanced support for controlling and managing access to lower level context services,

in addition to implicit support for user mobility, by way of context-based caching.

The design included a description of the constituent components which can be used

together to support context-aware applications designed for dynamic execution

environments. The following chapter details the implementation of the context

service architecture and, in addition, describes several prototype context-aware

applications developed using the architecture.

 107

Chapter 5

Architectural Design and

Implementation of a Context Service

Based Architecture

5.1 Introduction

The previous chapter demonstrated the need for a context service based architecture

and introduced the key architectural components of a prototype context service

designed to provide support for mobile context-aware applications. The prototype

context service introduced demonstrates a more flexible and dynamic approach to

context-aware application design and provides implicit support for application

operation within dynamic environments. Moreover, the context service is designed to

provide the application programmer with a convenient mechanism for supporting

mobility and application extensibility through an appropriate layer of abstraction

between applications and infrastructure.

This chapter considers the context service from an engineering perspective and

describes the prototype implementation in some detail including the associated

protocols used in its construction. The chapter also details a number of context-aware

 108

applications designed using the architecture as an initial illustration of the service in

use. Further studies detailing the infrastructure in use by the GUIDE system are

carried out and detailed in the evaluation chapter.

5.2 Design and Implementation of a Context Service

5.2.1 Context Service Provider

5.2.1.1 Introduction

To support the dynamic nature of mobile environments, the context service

architecture is designed to aid applications utilise context efficiently whilst

simultaneously offering support for mobility. In more detail, applications may

register their contextual interests and constraints with the context service provider and

allow the various components to control an application session on their behalf.

Furthermore, applications may utilise the session management features to support

operation during periods of disconnection. To allow for flexibility and to support

operation in dynamic environments, application developers may decide at design time

which services to utilise without explicitly binding an application to a particular

technology. For example, an application which makes use of location as a form of

context could be designed to register with the supporting architecture and specify

location and any associated constraints, such as timeliness and accuracy. This

approach removes coupling between applications and infrastructure and allows the

architecture to take responsibility for determining the location services to utilise at run

time. Furthermore, in a rapidly changing mobile environment in which a number of

location services may be present during an application‟s lifetime, the burden of

dynamic discovery does not lie with the application developer but with the supporting

infrastructure.

5.2.1.2 Accessing the Context Service Provider

Applications wishing to utilise the services offered by the context service provider

must first go through a simple registration process, summarised in figure 5.1. Since

the CSP may serve more than one application simultaneously, each individual

application must supply its credentials in order to utilise the services offered by the

 109

CSP. The registration process provides applications with an explicit mechanism to

stipulate any application specific context that may be used in order to tailor the

services offered. In more detail, applications must provide the following: application

name, a session identifier, a username and password pair for the user, the host name

and an available port number on which to receive contextual events (call-backs),

context types of interest and any associated constraints. For example, context types

such as camera, location or printer may have the associated constraints resolution,

accuracy and pages per minute respectively.

Once this personal information is submitted to the CSP, the details are processed via

the state manager which returns two data items to the registering application: a

dynamically generated unique identifier and a port number. The port number must be

used by the client for all further communication with the CSP and the unique

identifier must also be supplied in further communications to allow the CSP to

maintain state pertaining to each individual application session, i.e. a session log.

Context

Service

Provider

Event

Registration

Request

StateContext

Discovery

port Registration

Request
port

Applications

Figure 5.1 – The Context registration process

All future communications between an application and the CSP involve the use of

sequence numbers (or event identifiers) which are stored locally by the session

manager, a feature which appears transparent to the users. This facilitates support for

disconnected operation since a session log of all interaction is created and can be used

for synchronisation purposes following disconnection from the network, discussed in

more detail in section 5.2.6.2.

 110

Time

Aplication

Response

#1

Response

#3

Response

#2

Context

Service

Response

#3

Disconnection

CSP

Request

Fail

Request

#3

Request

#1

Request

#2

Connection

Cache

Request

Process

Request

Figure 5.2 - Session tracking using sequence numbers

The session manager is able to use the unique session identifier supplied during

registration along with the username and password pair to check the local cache for

any persistently stored user state, such as files or objects from the last application

session, that may need to be resumed. If no state is found locally, a request may be

made of the context server (i.e. local cell server or access point) which may in turn

query the central context repository to retrieve any previous application state.

The context types specified by the client application are passed to the discovery

component (see section 5.2.3) which searches for contextual services and retrieves

handles to the relevant services based on the specified constraints. Figure 5.3 shows

an example relating to the GUIDE II prototype (detailed in chapter six) in which the

system detects the availability of two alternative services of the same type. In this

scenario, the constraints specified by the user are used to aid the system determine the

most appropriate service based on the user‟s current context.

Aplication

CSP

Context = location

Accuracy = 1m

Registration Request

Search

Request

Search

Responses

Enumerate and Reply

Aplication

CSP

Aplication

CSP

Aplication

CSP

Figure 5.3 - Discovering multiple services

 111

The session manager‟s primary responsibility is to maintain state on behalf of an

application. Therefore, if during an application session additional services are

discovered, new constraints are specified, or existing constraints are modified the

session manager is responsible for ensuring that the factors are considered in order to

guarantee the most appropriate service is available and in use. The session manager

maintains a list of all application to service mappings and uses this data to ensure that

a consistent view of the environment is maintained.

The ContextServiceProvider interface provides the operations shown below in

figure 5.4.

public interface ContextServiceProvider

{

/* This method allows applications to login to the

 * platform and retrieve a unique session id and port number

 */

public DataPacket login (){ ... }

/* This method allows applications to register with the architecture

 */

public Boolean subscribe(String name) { ... }

/* This method allows applications to unsubscribe with the architecture

 */

public Boolean unSubscribe(String name) { ... }

/* This method causes the state associated with a

 * particular application session to be made persistent

 */

public Boolean save (Context c) { ... }

/* This method causes the state associated with a

 * particular application session to be restored

 */

public Context restore (String name, String password, int id) { ... }

/* This method is used by an application to indicate that it

 * wishes to terminate and thus store its state and unsubscribe

 * from the platform.

 */

public Boolean logout(String uName, String pWord) { ... }

/* This method allows an application to update any

 * contextual preference

 */

public Boolean update(Context C) { ... }

}

Figure 5.4 - The context service provider (CSP) API

 112

5.2.2 Context Services

Both abstract and bespoke services act as wrappers to the underlying infrastructure

and provide a way of hiding the specific implementation details from the application

developer. Their functionality is provided by the ContextService interface which

includes specific implementation details in addition to the generic properties inherited

from the abstract BaseContextService interface. This is used as a common

interface to allow standard methods to be defined. Furthermore, sub-classes are able

to overwrite these standard methods should extra functionality be required. This

approach offers the advantages such as flexibility, extensibility and reusability as

described in section 3.4.2.2.

public abstract class BaseContextService

{

/* Returns a Vector which can be enumerated by higher levels to

 * determine the state variables represented. E.g. latitude, longitude

 */

public Vector getState() { ... }

/* Returns a Vector which can be enumerated by higher levels to

 * determine the services (operations) available.

 * E.g. Playing or stopping a device.

 */

public Vector getServices() { ... }

// Return the current state (context) for a particular service attribute.

public Context getContext() { ... }

/* A query for a particular piece of Context which returns an

 * object based on the result of the query. E.g. get(“id”); would cause

 * the service to return its handle.

 */

public String get(String name) { ... }

/* To enable an application to be brought up to state the replay method

 * is used to replay events between a specified time interval or

 * some specific conditional context attribute.

 */

public Vector replay(GregorianCalendar from, GregorianCalendar to) { ... }

public Vector replay(Context C) { ... }

/* A call to this method causes a service to return a XML File

 * description containing details of its service interface.

 * i.e. service attributes, operations and communications channel.

 */

public File getDescription() { ... }

}

Figure 5.5 - The interface specification for a BaseContextService

One example of a context service might be a service representing a weather sensor,

that is, an entity collating and providing weather related context to applications. This

 113

service may include state representing the current state of the environment, for

example, current wind speed, humidity, temperature, etc. The

BaseContextService interface includes access methods which allow the context

associated with that service to be queried by applications within the system. The

BaseContextService interface contains the methods shown in figure 5.5.

public Context getContext();

This method is used to retrieve a service‟s current context. The result of the

getContext method is an object of type Context containing the information for the

requested service. This interface also includes a generic get method to enable specific

data items to be retrieved. For example, a call to get(“temperature”); would

cause the service to return the value relating to the current state of that attribute.

public File getDescription();

This method is used to retrieve a service description relating to a context service.

Using this description, the properties (i.e. state variables and access methods) of the

context service can be determined by an application. Once the service interface is

known, the individual data items can be queried using the aforementioned generic get

method.

The ContextService interface enables a specific instance of a generic

BaseContextService object to be created. Once instantiated a thread of execution

begins and a running object (i.e. a context service) has two primary responsibilities.

 Advertisements: A context service begins announcing its presence by

periodically multicasting service discovery packets. The discovery mechanism

used is described in more detail in section 5.2.3. Clients may register with a

service for call backs if the service is of interest, for example, a service that

provides the location of people within an office building obtained from a

variety of sensors may be subscribed to in order to be notified of a particular

user‟s location.

 Queries: A service is also responsible for responding to explicit requests for

data, context or subscriptions from applications, for example, an application

 114

may a periodically request the current context for a specific service, such as

the current temperature reading from a temperature sensor.

The interface to the context service component is shown in figure 5.6.

public class ContextService extends BaseContextService implements Runnable

{

/* This method causes a thread of execution for the service to

 * begin and by default starts periodic service advertisements

 * before listening for incoming requests from higher level applications

 * and lower level hardware (such as a sensor).

 */

public void run() { ... }

/* This method commences the service announcements based on the specified

 * delay (between announcements). A delay of 0 (zero) halts service

 * announcements.

*/

public void advertise(int delay) { ... }

/* Returns a Vector which can be enumerated by higher levels to determine

 * the services (operations) available. E.g. Playing or stopping a device.

 */

public Vector subscribe(host, port, appId, eventId) { ... }

/* A query for a particular piece of Context which returns an object

 * based on the result of the query. E.g. get(“id”); would cause the

 * service to return its handle.

 */

public boolean unsubscribe(host, port, appId, eventId) { ... }

}

Figure 5.6 - The context service API

The run() method is used to create a specific instance of a context service. Once

instantiated, in addition to the service specific actions and communications for which

the service is responsible (i.e. collecting data from a sensor), a service will

periodically announce its presence according to the specified delay. A context service

may be instantiated without advertising its presence to the rest of the operating

environment by specifying zero as the delay parameter when created. A separate

thread of execution is also started which listens for incoming requests, subscriptions

and un-subscriptions from client applications.

 115

5.2.3 Context Discovery

5.2.3.1 Overview

The context discovery mechanism is designed to provide a simple and fast mechanism

for enabling applications to be made aware of new context services from within the

environment. Since the development of a scalable discovery mechanism designed for

mobile environments is beyond the scope of this thesis and not of direct concern to the

author it is detailed as an area for future work in section 6.3. In addition, since the

discovery mechanism is a self contained entity, it is generic enough to be extended in

order to operate with any of the existing standards based resource discovery protocols

detailed in chapter two. Moreover, the discovery mechanism presented below

includes some features present within the Universal Plug and Play specification

described in chapter two [Microsoft,99] and, in essence, provides a simple mechanism

for context-aware applications to discover the range of context services on offer and

to automatically select the most appropriate service for use. The approach described

below, based on automatic selection of context services, is in contrast to the approach

adopted by the UPnP forum which places a large burden on the end user to determine

the semantics for any specific discovered service. In more detail, a large proportion

of the communications that exists between a client application and a resource is

related to the presentation of the service interface described in XML [Friday,01a].

Therefore, in terms of the work detailed in this thesis, the provision of a suitable

discovery mechanism capable of determining the most suitable service based on the

user stipulated context constraints is to be addressed and hence, the communications

overhead associated with the presentation of service interfaces is irrelevant. The

discovery mechanism detailed below can therefore be regarded as „black box‟

providing the following two basic features:

 Searching: Requests for a service are made by the context service provider

and services offering the required functionality must respond appropriately.

 Announcements: Services periodically multicast, to a well known channel

their service announcements.

 116

5.2.3.2 Context Discovery: Searching

Search Request

The context service provider is responsible for searching for context services of

interest within the networked environment. To do this, a search message (a UDP

datagram packet) containing the search criteria is multicast to a well known multicast

address [Meyer,98]. Context services listening for search requests respond with a

unicast message if the context types searched for are supported by the service.

A DiscoveryPacket multicast to the network must contain the following fields:

 Message Type: The message type must be set to SEARCH to identify the

packet as a search packet.

 Service Type: The context service type of interest must also be specified, for

example, a location service.

 Delay: Context services responding to search requests should delay their

response by a random delay between 0 and the value specified (as an integer)

by this field. This should aid the load balancing for the context service

provider when processing incoming responses.

 Client Identifier: A unique identifier representing the client making the

request.

Search Response

Any context service hearing a search request and whose service type matches with the

specified in the search request must respond with a unicast DiscoveryPacket

which must contain the following fields:

 Message Type: The message type must be set to RESPONSE to identify the

packet as a response to a search request.

 Service Identifier: The service identifier contains a unique identifier relating

to the service.

 Service Type: The context service type must also be specified, for example, a

temperature service.

 117

 Timestamp: Context services should insert a timestamp.

 Expires: The time in seconds from the time specified in the timestamp field

for the validity of this service should be specified.

 Service Channel: A port number that can be used to query the state of the

context service.

 Event Channel: A port number that can be used to subscribe to events.

 HTTP Channel: A URL for the XML description of the context service

enables a client to access the context service interface via the HTTP protocol.

See section 5.2.4. for more information on context service specification

 Interface Description: A description of the context service interface as a Java

ContextService object. A handle to the specified service is now

maintained by the context service provider.

5.2.3.3 Context Discovery: Announcements

The discovery protocol allows context services to advertise its services to the context

service provider. It does this by multicasting discovery messages to a well known

multicast group (address and port number). The format of the discovery message is

similar to that of a response to a search request, with the difference that the message

type is set to ANNOUNCE. The expires field notifies interested parties of the validity

of the service and is normally set to expire at the same interval as the rate of sending

discovery message, for example, a service that advertises its services every 60

seconds will include an expiration time of 60 seconds with all its discovery messages.

5.2.3.4 Determining an Appropriate Context Service

An application making a request for a specific context-service type may result in the

CSP discovering several services of the same type (e.g. location, camera). In this

situation, the services are enumerated and, according to the user stipulated context

constraints, a service is selected which best meets the criteria specified by an

application.

More specifically, the service selection process is determined by a combination of the

logical operators detailed in Appendix B when applied to both the user stipulated

 118

context constraints and the service description interface. For example, a user

specifying that they require the use of a location context service may also specify

constraints such as the use of a service capable of providing positional information

accurate to less than 20 metres. To meet these requirements, when selecting a service

the CSP will dynamically chose a service by interpreting the interface and searching

for attributes matching the user requirements, as shown previously in figure 5.3.

5.2.4 Specifying and Using Context

The author believes there is scope for providing a general mechanism for specifying

context built around the notion of context types. Context types are used to broadly

define the particular category of context being represented. By creating types and

templates for the specification of context, the sharing of context between applications

can be achieved [Byun,01].

To highlight the potential usefulness of this approach consider the context-aware

applications presented in chapter two which can be broadly classified into the broad

domains shown in table 5.1. It is shown how within each domain the range of context

types employed remains relatively static. This suggests that a simple mechanism to

enable context representation within these domains could provide scope for context

sharing between applications. For example, applications such as Forget-Me-Not and

CybreMinder may offer benefits to their users by sharing contextual information.

Domain Context-Aware Applications Contexts

Guide Systems GUIDE [Davies,98a], Cyberguide

[Long,96], HIPPIE [Oppermann,98],

[Oppermann,99b], Conference Assistant

[Dey,99a] and C-MAP [Fels,98]

location, time, preferences,

schedule, network

connectivity, etc.

Office

Assistants

CyberDesk [Dey,97], PARCTAB

[Want,95], Stick-E-Note [Brown,96]

document context, physical

parameters, proximity

relationships, etc

Personal

Assistants

Forget-me-not [Lamming,94],

Remembrance Agent [Rhodes,96],

ComMotion [Marmasse,00], Shopping

Jacket [Randell,00] and CyberMinder

[Dey,00a]

time, location, events, user

tasks and goals, etc

Field Work Adtrantz [Siewiorek,98] and FieldNote

[Pascoe,98b]

sensor based context, e.g.

temperature, etc

Intelligent

Environments

EasyLiving [Brummitt,00a], Cooltown

[Kindberg,00], TEA [Chen,99] and

Adaptive PDA [Schmidt,98]

physical environment

context relating to users and

devices

Table 5.1 - A summary of context-aware applications

 119

The approach described below was established during the implementation phase of a

number of simple context aware applications, namely UbiChat and the digital In/Out

board (see section 5.3.3) and during the re-engineering of the GUIDE system (see

section 6.2). The design of these simple applications aimed to exploit and build upon

the functionality provided by the GUIDE system (namely the use of location

awareness) and provided the motivation for devising a more general approach to

context specification (or representation) supported by the GUIDE tags introduced in

chapter three. The GUIDE tags employ a simple mark-up language to identify

context-sensitive aspects of hypertext pages. By extending the range and syntax of

the tags employed a simple mark-up language specified in XML is capable of

providing descriptions of contextual entities within a context-aware environment.

Figure 5.7 shows a sample context service template specified in XML used to

represent the functionality of a GPS device.

<?xml version="1.0"?>

<context-service>

 <contextServiceType>Location</contetxSserviceType>

 <contextServiceId>GPS-Device-Identifier</contextServiceType>

 <contextServiceChannel>

 <host>name</host>

 <port>6000</port>

 </contextServiceChannel>

 <eventChannel>

 <host>name</host>

 <port>6100</port>

 </eventChannel>

 <serviceScope>

 <groups>

 <groupName>DMRG</groupName>

 <groupName>Ubicomp</groupName>

 </groups>

 </serviceScope>

 <contextServiceStateTable>

 <contexStateVariable>

 <name>positionX</name>

 <dataType>number</dataType>

 <allowedValueRange>

 <minimum>0</minimum>

 <maximum>1000</maximum>

 <step>1</step>

 </allowedValueRange>

 </contextStateVariable>

 <contextStateVariable>

 <name>positionY</name>

 <dataType>number</dataType>

 <allowedValueRange>

 <minimum>0</minimum>

 <maximum>1000</maximum>

 <step>1</step>

 </allowedValueRange>

 </contextStateVariable>

 </contextServiceStateTable>

 120

 <actionList>

 <action>

 <name>setPositionX</name>

 <paramterList>

 <paramter>pos</paramters>

 <paramterType>long</paramterType>

 <returnType>

 <Boolean>

 </returnType>

 </action>

 </actionList>

</context-service>

Figure 5.7 - A sample XML specification for a context service

The main components of the service template presented above are as follows:

 Context Service type and identifier: The context service type is used to

identify the nature of the service offered, such as a printer service. The context

service identifier is used to uniquely identify a specific service since more than

one service of a particular type may exist.

 Context Service state table and variables: The context service state table is

used to represent a structure of state variables in use by the context service. In

essence, the state variable is used to represent any item of context (state) that

can be queried by client applications. A state variable includes a name, the

data type represented and the permitted range of values, if relevant.

 Action Lists and Actions: An action list is used to represent the possible

actions or methods supported by a context service. An action includes a name,

any associated parameters and types and the return type expected.

 Service Scope: Access to a context service may be controlled by specifying

the service scope. More precisely, a service may be intended for a specific

user and may therefore only be accessible by that user. For example, a service

representing a user‟s personal diary may have restrictions placed upon the

service, allowing only the creator of the service access, i.e. a private service.

Furthermore, a service may include group access, for example, enabling all

members of a department to access a personal diary. Finally, a context service

may be visible to all system entities, that is, it be publicly available, such as a

context service representing a weather sensor [Cheverst,00d].

A context service identifier distinguishes uniquely a particular service and is a

common feature in resource discovery architectures [Microsoft,99], [Sun,99b]. The

 121

identifier provides a simple way of distinguishing services uniquely despite the fact

that several services of the same type may co-exist.

The notion of service type is used by the context-based architecture to support the

automatic selection of context services based on specific functionality. Type

definitions are used to inform applications of the semantics of the operational

interface provided by a context service. For example, a context service of type

Location will have different operational properties to a service representing a camera.

The use of types in the context service discovery process provides simplicity and

flexibility when performing type matching of search requests.

For evaluation purposes (see chapter six) the context service types supported by the

current implementation include location, camera, network, weather, user, message,

profile, tour and temperature. Furthermore, an XML template also exists for the user

model (i.e. the GUIDE user profile object) detailed in chapter three. More

specifically, the attributes relating to a GUIDE user profile object detailed in chapter

three and appendix A are publicly accessible through an XML interface in order to be

utilised from a range of context-aware applications.

5.2.5 Context Translation

The architecture provides a translation service that enables XML documents to be

parsed and converted into Java objects and vice-versa. For example, the following

sample XML document represents part of a user‟s profile. This structure can be

interpreted by the system and converted into an instance of the UserProfile object

in order for a GUIDE client application to read, manipulate and store the user‟s

profile. Access to the user profile for example, through a WAP interface, is provided

by accessing and modifying the XML document directly. In this instance the WAP

interface gains access through a simple HTTP proxy server.

 122

<application>

 <name>GUIDE Browser</name>

 <id>gb1</id>

 <host>mitchell.lancs.ac.uk</host>

 <port>3000</port>

 <active>true</active>

 <context>

 <type>location</type>

 <requirements>

 <name>accuracy</name>

<value>200</value>

 </requirements>

 <privacy>

 <access = all>

 </privacy>

 </context>

</application>

Figure 5.8 - A sample XML description for the GUIDE application

The advantage of using XML for context representation is that it does not force

context-aware application designers to implement context services in any specific

programming language. Instead, clients and services can be implemented in any

programming language with the only requirement that the communications protocol

and context specification be adhered to. However, all prototype implementations

detailed in this thesis have been developed using the Java programming language.

5.2.6 Communications

5.2.6.1 Introduction

Chapter three (section 3.3.3) described an approach to providing support for a

potentially large user community through data dissemination based on the

broadcasting of information. Furthermore, it was also described how clients are able

to issue specific requests for resources not contained within the broadcast schedule.

This technique supplements the broadcast based approach with a pull-based approach.

However, despite these two alternatives, it is possible for clients to operate using stale

information or for information broadcast by servers to be missed by clients (for

example if they leave a cell and only receive part of a broadcast transmission).

5.2.6.2 Engineering Issues

In order to provide a more reliable means of communications and allow applications

to have where possible the most relevant data, the communications mechanism

described in section 3.3.4 was extended to allow applications to subscribe to specific

 123

context sources. More specifically, the broadcast approach supplemented with client

pull was extended to enable applications to subscribe to particular context events.

The communications protocol shown in figure 3.4 was extended to include the

following additional types :

 Subscribe: The subscribe type is used when a client application wishes to

subscribe to a specific item of context, such as the temperature of a particular

sensor. By doing this, any changes to the state of the temperature will be

propagated to all interested parties. A service that receives a subscription

request is required to maintain a handle to the requesting client.

 Unsubscribe: Applications wishing to unsubscribe from a particular item of

context must issue an unsubscribe request. When an unsubscribe request is

made of a service the handle relating to the client application is removed from

the service so that no further updates will be propagated.

 Save: In order to manage application state across sessions and devices, a safe

termination of an application will result in a save command being issued.

By requesting a save and supplying the session identifier and user credentials

any state pertaining to a session can be stored by the local context server,

which may in turn propagate these changes to the central context repository.

 Restore: Applications wishing to return to a previous session during

initialisation can issue a restore command along with a session identifier

and user credentials. Any relevant state can therefore be retrieved from either

the local CSP or the remote context repository.

The adoption of a subscription mechanism affords context-aware applications with the

ability to register for particular events and then move freely throughout a distributed

environment and still have updates delivered in a timely manner. This is discussed in

more detail in section 6.3.4 and summarised below in figure 5.9.

 124

Time

Aplication

Event #1 Event #3Event #2 Event #4
Context

Service
Event #3

Event #1 Event #2 Disconnection
Event #4

(cached)
CSP Event #3

Replay

3

Event #4Event #3Event #1 Event #2

Figure 5.9 - The replaying of events following disconnected operation

5.3 Infrastructure in Use

5.3.1 Overview

This section illustrates how the architecture described in the previous section was

used to author two simple prototype context-aware applications. The two prototypes

described below were developed in parallel with the GUIDE II prototype (detailed in

chapter six) in order to create a number of smaller application demonstrators within

the domains of guide systems and office assistants (as described previously in table

5.1). In essence, they were designed to take several of the original GUIDE

application features, namely the location-awareness and communications tool, and

allow them to be further developed within a working laboratory environment

independently of the rest of the system. In more detail, the use of location awareness

in conjunction with a universal communications tool (i.e. a messaging application

called Ubichat) provides a good foundation with which to experiment further with the

CSP architecture using a real user base (i.e. members of the department). The first

prototype application described, Ubichat (ubiquitous chat), allows users to send

instant messages to users on their contact list irrespective of the sender or receiver

location or the device. The second prototype application described, the digital In/Out

board provides a simple awareness mechanism relating to the location of the

department‟s Distributed Multimedia Research Group (DMRG) members.

 125

5.3.2 The Ubichat Application

5.3.2.1 Introduction

The initial motivation for Ubichat was established after the success of the message

service incorporated into GUIDE application. The GUIDE message service proved to

be a very popular tool despite several limitations. These included the inability to

communicate with users whilst they were experiencing periods of disconnection and

the lack of feedback relating to the status of sent messages. During a user field trial

a short message service (SMS) gateway was incorporated into the GUIDE system to

provide a simple mechanism for allowing GUIDE instant-messages to be sent over the

GSM network. This enabled users of the GUIDE system to communicate with users

outside of the system. Ubichat provides a general messaging system and is able to

send/receive messages of different formats to/from a range of devices. The

application currently supports three message formats:

 Email: Messages may be via a POP mail server to the intended recipient.

 Short message service: Messages may be sent via the GSM network as a

short text message.

 Ubichat message: Messages may be sent directly to the recipient‟s Ubichat

client application.

When a user initialises their Ubichat application, they are presented with an interface

that is similar to other instant messaging applications such as ICQ or MSN

Messenger, shown in figure 5.10. Users are presented with their personal contact list

(retrieved from the context service provider based on their username and password

pair), for example, friends, work colleagues, etc. The contact list not only displays the

names of other users but also their status or context. More specifically, the status of a

user reflects their current location, device they are using and, finally, an indication

regarding the validity of the context. This contextual information is used to provide

users with an awareness of other users and also their device constraints. Furthermore,

this awareness information is used by default to adapt the delivery mechanism

adopted when sending messages to members of the contact list. For example, if the

system detects that a user is located in their office, a message will be sent directly to

 126

their Ubichat application; however, if the system detects that they are out of the

office, a notification may be sent to the user‟s mobile phone.

5.3.2.2 Building the application

When Ubichat is launched, it registers with the context service provider and specifies

the context of interest, in this example, location and user services are required. The

user manager service is responsible for maintaining a structure of a user‟s current

context, that is, their location and where possible their device type. Updates to user

context are reflected at the interface level and take into consideration the user

stipulated privacy options, that is, a user is only made aware of other users within

their contact list, as shown in figure 5.10.

Figure 5.10 - Ubichat interface for both Palm and Windows platforms

The user manager service abstracts over the process of collecting the context relating

to a user and their context. From the application developer‟s point of view, the user

manager provides a number of simple operations that enable a user‟s location to be

determined and hides the complexity of how the context is collated. In more detail,

the Ubichat application is able to collect location updates from a variety of sources

(see figure 5.11).

 127

Ubichat

Wireless Link

PDA Workstation

Ubichat

Ethernet

iButton Location

Service

Mobile Phone

Ubichat

Interface

GSM

User Manager SMS Loation ServiceBeacon Location Service

GPS Location

Service

Context Server

EMSMCM

Discovery

EMSMCM

Discovery

EMSMCM

Discovery

Figure 5.11 - Ubichat architectural components

Updates may be posted to the user manager from a number of sources, including:

 GPS: A user of the system utilising a GPS device for location updates may

notify the user manager of their location updates.

 iButton: A number of Blue Dot receptors, or iButton readers, are located

throughout the department building and an application monitors the state of

the reader and waits for users to „dock‟ their iButtons, as shown in figure 5.14.

 Cellular Infrastructure: The cellular based wireless infrastructure

periodically transmits unique identifiers, or beacons, throughout the city,

university campus and department offices and laboratories.

 SMS: Users may update their context manually by sending an SMS message

to a pre-defined mobile phone number. This number belongs to a WaveCom

GSM module which is permanently connected to a PC running Linux. A

software component running on the device monitors the inbox and parses the

SMS messages. SMS messages with the syntax shown in figure 5.12 are

processed and location updates posted to the user manager.

CMD UPDATELOC USERNAME LOCATION PRIVACY

CMD UPDATELOC KEITH OFFICE ALL

CMD UPDATELOC NIGEL HOME GROUP DMRG

Figure 5.12 - The format of a sms message

The Ubichat application makes use of the contact list to determine which users to

register an interest with. By registering with the user manager and supplying a list of

usernames, the user manager can track sightings of members of the contact list on the

 128

application‟s behalf. Any updates received by the user manager are propagated to the

relevant client applications and their interface is updated accordingly. Figure 5.13

shows how a client application is able to receive location updates from any number of

location services. It is also shown how, through the use of the central context

repository (residing in the network), a client‟s session can be saved and restored on a

separate device.

User Keith M

PDA

User Adrian

Mobile Phone

SMS Location

Update

User Manager

User Keith C

PDA

Beacon Location Service

Location UpdateACK

SMS Gateway

Context Update

Context Update 1. Location Service Recieve Updates

2. Updates propogated to User Manager

3. Event dispatched to user

1

2

3

2

1

Figure 5.13 - Receiving a location update

To send a message, a user simply double clicks on the name of the person they wish

to contact before entering the message content. The message is then delivered to the

message service which determines how best to dispatch the message based on the

recipient‟s context.

5.3.3 The Department’s Public In/Out Board

5.3.3.1 Building the Application

The digital In/Out board application, as shown in figure 5.15, was designed to provide

a simple awareness mechanism for staff and research students to quickly determine

the availability and location of academic staff within the department.

Two versions of the In/Out application are available, the first is a simple Java client

that runs locally on a PC with a Blue Dot receptor attached. The client monitors the

state of the reader and waits for users to „dock‟ their iButtons [iButton,00a], as shown

in figure 5.14 below, before forwarding the iButton sightings to the user manager.

The client also registers with the user manager and displays the in/out status of the

 129

research group members contact list. Additional information displayed includes their

current (or last known) location, a timestamp recording their last sighting, and a

hypertext link to a log file which contains a record of all their previous sightings

within the building.

Figure 5.14 - The In/Out board iButton reader

 The second version of the application
1
, provides a simple web based interface to the

system which displays similar details.

Figure 5.15 - The web interface to the department’s In/Out application

When the In/Out application is launched, it registers with the context service provider

and specifies the context of interest, in this example, location and user services are

required. The user manager service which forms part of this application is the same

service described previously in relation to the Ubichat application. As a result, both

applications executing on the same device will receive updates relating to a user‟s

location context simultaneously. This property enables applications to share context

1
 Available internally (for security and privacy reasons) at http://athens.comp.lancs.ac.uk/inout

 130

common among different executing processes. By default, the digital In/Out client

registers with the user manager and is able to retrieve location updates for all users of

the system. However, by specifying privacy constraints, the visibility of a particular

user can be restricted to a specific group or specific users. Any updates received by

the user manager are propagated to the relevant client applications and filtered before

their interface is updated. Figure 5.16 shows the architectural components which

relate to the digital In/Out application.

In/Out

Wireless Link

PDA Workstation

In/Out

Ethernet

iButton Location Service

User Manager SMS Loation ServiceBeacon Location Service

GPS Location

Service

Context Server

EMSMCM

Discovery

EMSMCM

Discovery

Figure 5.16 - The digital In/Out application architecture

5.3.4 Analysis

The primary advantage of the approach presented in this chapter, in relation to the

above applications, is that the use of a context service enables applications to share

context (state) both at run-time and between different application sessions executing

on (perhaps) multiple devices. More specifically, since the context service provider is

responsible for session management all interactions that take place are made persistent

after the lifetime of the application (discussed further in chapter six). Should a user

then initialise a new instance of a client application, say on an alternative device, then

data relating to a previous session can be quickly restored and accessed (including

contact list, history, etc). Moreover, since the context service provider acts as an

intermediary for applications, different applications are able to access context or re-

use the same context maintained centrally, i.e. maintain the same view of contacts,

history, etc (see figure 5.17 below). This enables a user to work and move between

devices during the course of a day and to maintain consistency irrespective of their

device or application.

 131

Ubichat

Workstation

Central Context

Repository

Wireless Cell

Context Server

(Wired Access Point)

Context Server

(Wireless Access Point)

Context Server

(Wireless Access Point)

Ubichat

PDA

In/Out

EMSMCM

Discovery

EMSMCM

Discovery

Figure 5.17 - Shared access to context

Furthermore, the implementation details which relate to specific services are hidden

with access to the functionality obtained through standard interfaces. Since the use of

context is controlled through the specification of context types, there is no inherent

coupling between any particular application and a service offering the context of

interest. As a result, should a new context service be added to the execution

environment offering similar functionalities, the use of context specification and

context discovery provides an application with the ability to adapt to changes in the

environment. For example, when considering the applications detailed above, should

the use of an alterative location technology be included into the computational

environment (e.g. RF-id tags), then all that would be required by a system designer

would be to create a service that acts as a wrapper for the underlying technology.

Then, once instantiated, this executing service will become part of the context space

and client applications can be notified of its presence and be able to make use of the

service if required. A more in-depth analysis of the context service is described in the

evaluation detailed in chapter six.

5.4 Summary

This chapter has described the design and implementation of a context service based

architecture to provide developers of mobile context-aware applications with a useful

mechanism for building applications designed to operate in mobile and potentially

volatile environments. The key features of the context service based architecture are:

 The provision of a standard interface enabling clients to utilise a range of

context services through a single interface;

 132

 A mechanism for enabling users to stipulate their context constraints;

 Transparent session management features that support context-aware

applications within mobile environments, that is, implicit support for user

mobility including disconnected operation and roaming between multiple

devices;

 The sharing of context amongst applications and application sessions;

 The development of context services that are re-usable across a range of

applications, including inherent support for a variety of portable end-systems

and platforms;

 An architecture capable of handling both synchronous and asynchronous

modes of communication;

 Support for the dynamic discovery and utilisation of context services.

The main aims of the CSP are therefore to support mobile-users irrespective of their

application or device and facilitate intrinsic support for ubiquitous context-services,

user mobility and discovery within a highly dynamic environment.

The features provided by the context service were based on a set of requirements

identified through an analysis of related work presented in chapter two and evaluation

of the approach to mobile context-aware application design adopted as part of the

Lancaster GUIDE project. The author believes that these features provide a solution

to the problem of supporting context-aware applications designed for use in dynamic

mobile environments. The following chapter evaluates the context service based

architecture through a number of real scenarios and shows how, through re-

engineering of the GUIDE prototype, the system can more readily adapt to its

execution environment.

 133

Chapter 6

Evaluation

6.1 Introduction and Methodology

The previous two chapters detailed the computational and engineering models relating

to the Context Service Provider (CSP). This chapter evaluates the CSP and, more

generally, the use of context services as a mechanism for supporting context-aware

applications in mobile environments. The focus of the evaluation is entirely

qualitative in that the chapter aims to validate the set of requirements for building

context-aware applications and the effectiveness of the approach for experimenting

within mobile environments. To achieve this, the evaluation takes the form of

prototype implementation and experimentation to illustrate the flexibility provided

through the use of context services.

A quantitative evaluation of the architecture detailed in this thesis is not provided

since it is difficult to identify which specific items to evaluate or indeed what benefits

are afforded by such an evaluation. First, it is difficult to specify a representative

evaluation scenario that would provide typical values for the large number of

contextual variables that may affect the overall system performance, such as the

mobile devices and communications technologies being employed. More specifically,

the GUIDE II prototypes and CSP make use of a variety of communications

 134

technologies all of which share the university backbone network. As a result, the

communications medium and available bandwidth is shared making it difficult to

ascertain any potential benefits of this approach over an alternative approach within

this environment. Furthermore, the lack of meaningful benchmarks that may act as

reference values further complicates the interpretation of any quantitative

measurements. Second, the prototype CSP implementation used in the evaluation has

not been optimised for performance and was essentially created as a proof-of-concept

implementation. Therefore, any performance measurements such as overall client

latency, that is, the overall time required to discover, select and use a service after

entering a new context, would be highly dependant on the discovery mechanism

employed. Recall from chapter five that this was not a primary concern for the work

detailed within this thesis and considered a valuable area for future work (see section

7.3.1). To some extent, the fact that the architecture is accessible from a range of

mobile end-systems and has been deployed across a range of Linux and Windows

based servers around both the city and campus network is of more relevance since this

affords a basis for experimentation.

The evaluation therefore evolves as follows. First, section 6.2 will focus on the

experiences gained from re-engineering the GUIDE application, referred to as GUIDE

II, to make use of the common infrastructure detailed in chapters four and five. The

overall architecture will be detailed first, including the major differences with respect

to the original implementation. This will test the hypothesis relating to flexibility and

demonstrate how an application (i.e. the GUIDE II prototype) is able to execute across

a wide range of mobile end-systems whilst making use of the common infrastructure.

The GUIDE II prototype will then be utilised to further evaluate the underlying

infrastructure using a number of real scenarios that demonstrate the key features

effectively (section 6.3). More specifically, it will be shown how the GUIDE II

application benefits from the support provided by the context service based

architecture in terms of application portability, flexibility and evolution. Furthermore,

the architectural features enabling context-aware applications to be used in a dynamic

mobile environments will be demonstrated. Following this, section 6.4 evaluates the

CSP with respect to the requirements presented in chapter four, before, finally, a

summary of the evaluation is described in section 6.5.

 135

6.2 Re-engineering the GUIDE application: GUIDE II

6.2.1 General Approach

Many of the requirements for building the context-service based architecture were

derived from a critique of the GUIDE prototype application. It is therefore instructive

to re-engineer the GUIDE application to exploit the features in order to verify the

initial requirements and to qualitatively evaluate its suitability within the mobile

application domain. To facilitate operation with the underlying infrastructure the

design of the GUIDE II application centred around the following modifications:

1. The design of application modules to support interaction with the underlying

architecture;

2. The generalisation of core application services, such as the tour guide

component, the message service and location service, enabling simultaneous

access by multiple applications;

3. Extensions to the user interface to provide users with a mechanism for

stipulating their context constraints and a suitable mechanism for providing

feedback pertaining to the state of the operating environment, and;

4. The development of alternative user interfaces to facilitate access to the

GUIDE II service infrastructure from a range of portable end-systems.

6.2.2 Application Design: General Architecture

A key objective for redesigning the GUIDE prototype application was to employ a

more general approach and facilitate interaction with the CSP and context-services

detailed in the previous chapters. Since the original implementation was specific to

Lancaster and relatively difficult to extend, the GUIDE II application was designed to

overcome these specific limitations and, by supporting incremental development of

new functionality, include enhanced support for distributed environments. Initially,

the functionality represented by each of the GUIDE constituent elements were

isolated and redesigned to use the common infrastructure detailed in chapters four and

five, the focus being to demonstrate access to the functionality from a range of mobile

devices and not wholly the GUIDE unit presented in chapter three [Fujitsu,98]. To

facilitate this the application‟s interface was separated from the core functionality

 136

allowing GUIDE services to be rendered on multiple interfaces (i.e. physical devices).

In essence, the GUIDE II application can be regarded as two primary components: the

user interface and the agent (or proxy) component, which contains a significant

proportion of the application‟s functionality. Since HTTP is used as the primary

means of communication between system components, it is possible to execute the

user interface and other components as separate processes without any adverse affects

in performance. This separation of concerns allows multiple interfaces to be designed

targeting the attributes afforded by specific mobile devices while, simultaneously, the

core services remain device and platform agnostic. Figure 6.1 summarises the

GUIDE II system components with respect to the underlying infrastructure and the

following sections discuss the modifications in more detail.

GUIDE II

Interface

EMSMCM

Discovery

GUIDE II

Agent

HTTP

HTTP

Context Service Provider

HTTP Java Method Call

Figure 6.1 - A summary of the GUIDE II system architecture

6.2.3 Generalising the Core Application Services

The two major GUIDE components required to be modified were the location

mechanism and the information model. The use of location beacons broadcast over

the wireless communications channel provide the GUIDE application with positional

information. This approach provides varying location accuracies depending upon the

location of the GUIDE cell server, since the city‟s geography affected the propagation

of the radio signal quite dramatically, as discussed in section 3.3.2.2. Furthermore,

the GUIDE application, and therefore the user, remain unaware of these

inconsistencies and the varying levels of connectivity afforded by the infrastructure.

In essence, only a simple visual indicator representing either full or no coverage is

supported at the user interface level, as shown in figure 6.2 [Cheverst,99a].

 137

Figure 6.2 - Network connectivity at the user interface level

Thus, when designing the GUIDE II application, the location services were re-

engineered with the ability to express the type of service they offered and the level of

service (QoS) available, as described in section 5.2.4. For example, a location service

is able to advertise to applications the accuracy it provides (e.g. 10m or 100m).

Primed with this knowledge an application may determine and select the most suitable

service by trading-off the various properties. With this in mind, the location services

were re-engineered as generic context services as described in section 5.2.2.

With respect to the information model, the GUIDE system was tightly coupled to the

Lancaster object model and was unable to load objects dynamically. Furthermore, the

prototype required that all objects be stored locally and that they be processed upon

application initialisation. This approach has several limitations: first, when

modelling a relatively compact city such as Lancaster, the number of objects required

is quite small
2
 and may therefore reside locally with relative ease. However, when

modelling a large city, such as New York, a more scalable approach is required since

it may not be possible to store large data sets relating to an entire city locally. Second,

it was discovered during an evaluation of the GUIDE prototype [Cheverst,00a] that a

requirement to support virtual navigation exists [Benyon,97]. For example,

information pertaining to a particular landmark in Lancaster may contain a reference

(i.e. a hypertext link) to a landmark in another city. By following this link a user

decides to visit the landmark or city virtually, and therefore, the relevant data model

will need loading dynamically. Therefore, a single system capable of dynamically

downloading any number of information models would enable a user to pre-plan a trip

to a destination from home and then allow access to their tourist itinerary as they

travel. Moreover, a tourist visiting several destinations will be able to obtain

information dynamically on demand.

2
 Currently over 450 objects (location, navigation, neighbour objects) exist, which is enough to model

the city centre of Lancaster, and requires approximately 675 K bytes of disk space.

 138

6.2.4 User Interface Extensions

To provide users with a convenient mechanism for associating contextual constraints

with their user preferences, a number of user interface enhancements were required.

Furthermore, modifications were also required to ensure that feedback relating to the

state of the environment was clearly represented.

By default, the GUIDE application requires the use of several context services

including: a location service to provide positional information to users, a tour guide

component to provide a model of the geographic environment and for navigation

tasks, and a messaging service to support communication between GUIDE users.

Since location acts as a valuable form of context the GUIDE II application enables

users to stipulate several QoS constraints associated with their location. In essence,

users are able to control several parameters in relation to making use of a location

service: the frequency of updates required, the approximate battery consumption

required and the positional accuracy required (as shown in figure 6.3 and appendix

A). It should be noted that a trade off exists between positional accuracy and power

consumption. More specifically, a user who requests a higher degree of positional

accuracy is assumed to require a location mechanism such as a local GPS compass.

In a situation where positional accuracy is of less importance an alternative

technology, such as the beacon based approach detailed in chapter three, may be

utilised since this is likely to reduce the battery consumption of the mobile device.

Figure 6.3 - User specification of context constraints in GUIDE II

With respect to the information model utilised by the GUIDE system, users may

specify their tour guide constraints by stipulating both their user preferences and the

city they are interested in exploring (see appendix A). As detailed in the previous

 139

section, the original GUIDE prototype was tightly coupled to the Lancaster

information model. Therefore, the GUIDE application was modified to interact with

the underlying CSP in order to utilise the discovery features provided and to enable

dynamic binding to available information models. During application initialisation,

the GUIDE II application broadcasts a discovery packet specifying the context

constraints, as shown in figure 6.4.

 Name (identifier) Condition

Context Type Type Location

Context Constraints Accuracy

Delay

Battery

(GREATER or EQUAL) 25

LESS 10

*

Context Type Type Geographic Model

Context Constraints City *

Figure 6.4 - GUIDE II discovery packets

The asterisks (*) shown in figure 6.4 represents a wildcard, denoting that no specific

constraints have been specified and so the results of a search for all context services of

this type will be returned. Based on the above discovery packets, the following user

interface, shown in figure 6.5, is presented to a user of the GUIDE II application

which identifies several geographic models available for use.

Figure 6.5 - GUIDE II geographic service selection

6.2.5 Developing for mobile devices

6.2.5.1 Overview

The GUIDE II application was designed to facilitate operation across a range of

portable devices and, as introduced in section 6.2.2, the user interface can be designed

 140

targeting specific mobile device characteristics. In essence, issues such as display

characteristics and available screen real estate were pertinent to the development of

the user interface. For the purposes of the evaluating the CSP architecture, the

GUIDE II prototype application was designed for each of the following devices

(summarised in figure 6.6), since they are widely available and reflect the current

state-of-the-art at the time of writing:

 Pen Tablet: A GUIDE II application was developed targeting the original

GUIDE unit, the Fujitsu TeamPad 7600 [Fujitsu,98].

 PDA: A GUIDE II application targeting the Compaq iPAQ Pocket PC PDA

was developed which enables context-aware information to be accessed via

the Pocket Internet Explorer web browser [Sun,00d].

 Mobile Phone: A GUIDE II application targeting the Wireless Application

Protocol (WAP) [WAP,00] was developed and tested using both a Siemens

C35i WAP enabled mobile phone and a WAP Emulator. In this version,

access to context-aware information was obtained remotely with no processing

carried out locally apart from the rendering of WML decks and cards by the

WAP browser.

GUIDE II

WAP Interface

Context Server

Context Repository
PDA

GUIDE II

EMSMCM

Discovery

GUIDE II

GPS Service

TeamPad

EMSMCM

Discovery
Weather

Service

Camera

Service

GUIDE Location

Service

Tour

Service

Messaging

Service

User Manager

Service

GUIDE II

Proxy

EMSMCM

Discovery

Remote Proxy for WAP Access

Figure 6.6 - A summary of the GUIDE II prototypes

6.2.5.2 Accessing The GUIDE Infrastructure using a PDA

The PDA interface is based around the Compaq iPAQ Pocket PC [Compaq,01] and

provides a standard web interface to the GUIDE II infrastructure. The Pocket Internet

Explorer web browser is configured to access a HTTP proxy which is executing

locally [Sun,00d]. This local proxy (see section 3.5.4) has been modified to register

with the CSP and, in terms of application functionality, operates in exactly the same

 141

way as detailed in chapter three. To enable a similar „look and feel‟ to the existing

GUIDE application, the GUIDE filter (see section 3.5.5) has been modified to

dynamically adjust the hypertext content based on the context of the mobile device.

The filter dynamically inserts a header before displaying a hypertext page which

includes a user‟s location context and a series of buttons relating to the main tourist

services available. The location context describes either their current or last known

position as shown in green or red respectively in figure 6.7.

Figure 6.7 - The GUIDE II interface for a Pocket PC PDA

6.2.5.3 Accessing the GUIDE Infrastructure using WAP

To access the context-aware services offered by the GUIDE II infrastructure users of

an ultra-mobile device, such as a WAP enabled mobile phone, are able to connect to

the remote GUIDE proxy component. This proxy makes use of an additional filtering

service to translate tourist hypertext pages into WML decks and cards designed for

display by a WAP browser. The GUIDE WAP interface supports functionality

including the ability for new users to login and create a profile, in addition to allowing

existing users of the system to login, using their username and password and retrieve

an existing profile. All user requests are processed by the proxy component which

stores and retrieves their personal information from the context service provider. By

allowing access to the user profile in this manner context-sensitive content can be

delivered to a mobile user using WAP.

 142

Figure 6.8 - The GUIDE II WAP interface

6.2.6 Summary

This section has detailed the design of the GUIDE II prototypes based on a series of

modifications to the original GUIDE implementation presented in chapter three.

More specifically, two additional prototypes, based on a PDA and mobile phone, were

introduced which facilitate access to the GUIDE tourist services and CSP

infrastructure via a range of portable end-systems. This provides a suitable

mechanism for evaluating the features of the CSP architecture since it can be shown it

is able to operate across a wide range of devices.

The experiences gained through this process has helped test and prove the hypothesis

that the use of context services simplifies the development of mobile context-aware

applications. In particular, the application development process was greatly

simplified once a suitable underlying infrastructure consisting of the CSP and

(GUIDE) context services were created. Indeed, the WAP and PDA versions of the

GUIDE prototype was developed significantly more rapidly than the original

implementation. More importantly, modifications to the GUIDE context services

requires little or, in most cases, no further modification to the prototype applications

since no hard-wired reliance exists between the application functionality and the

specific service implementations.

The current prototype CSP implementation has been developed using JDK 1.1.8 and

the PersonalJava 1.1.1 specification. This configuration ensures that the architecture

can be deployed within a range of devices operating under a variety of different

platforms. More specifically, the CSP implementation detailed in this thesis has been

developed and tested using the Windows 95, Windows NT, Windows 2000 and

Windows Pocket PC operating systems. Furthermore, these have been executed on a

range of computational devices including a Compaq iPAQ Pocket PC, Dell Latitude

 143

CS Notebook and a range of Pentium Pro, Pentium II and Pentium III personal

computers. Furthermore, the range of services and applications detailed herein have

also targeted the above platforms and devices.

6.3 Test Scenarios

The following section presents a further qualitative evaluation of the programming,

service-deployment and mobility support aspects of the CSP. The bulk of this section

is devoted to a GUIDE II case study and investigates through a number of real

scenarios the extent to which the architecture provides the necessary support for

context-aware applications to execute in a dynamic environment.

For the benefit of the reader, recall from section 4.3.1 the primary design goals:

 to allow a user to work and move between devices during the course of a day;

 to maintain a consistent view of the state of their environment irrespective of

device or application being used;

 to include support for application adaptation and state management in relation

to a changing execution environment involving the discovery and utilisation of

new services.

These form the motivation for the following usage scenarios and will each address a

key consideration in supporting a user within a dynamically changing execution

environment in which periods of network disconnection are prominent, the

availability of services fluctuate rapidly, and the device utilised to provide access to

services changes over time.

6.3.1 Scenario One: Supporting Applications in Changing Environments

6.3.1.1 Introduction and Motivation

This scenario simply considers the introduction of a context service into an already

executing system and the mechanisms enabling client applications to utilise the

service dynamically. This allows a client application to remain usable despite

frequent changes to the environment. The motivation for this test stems from the

 144

GUIDE prototype application, where the inability for users to select services based on

their current context given the existence of a number of alternatives was seen as a

major drawback. More specifically, the wireless network utilised to provide users

with location information provides relatively coarse-grain accuracy in terms of cells;

that is, users are only able to determine which geographic region of the city they are

located in. Therefore the system is unable to inform them that they are located near a

specific landmark, such as a particular shop.

By supplementing the wireless infrastructure with a variety of more accurate location

technologies, such as Active Badges, Bluetooth devices or RF-id tags, the GUIDE

system is able provide users with more accurate location information. In a situation

where alternative location technologies are made available, the GUIDE

implementation is unable to dynamically make use of them even though the

alternatives may poses more attractive properties (i.e. accuracies, power constraints).

Within such a diverse environment, it may be valuable for a user to select services

based on their current context. For example, following a guided tour of a city may

require fine grained accuracy whereas accuracy may be less important to a user

simply browsing information whilst having coffee.

6.3.1.2 Implementation

The overall scenario, shown in figure 6.9, considers the introduction of a new location

service into an already executing application session. In the current implementation a

user of the GUIDE II prototype application specifies their location constraints initially

during startup, and these are stored as part of the user profile (see appendix A).

GUIDE II GUIDE II

application re-binds

to be new service

EMSMCM

Discovery

EMSMCM

Discovery

application bound

to services

Figure 6.9 - Introducing a new context service

The GUIDE II application registers with the CSP and passes the user profile and

context constraints to the context manager. The context manager extracts the service

 145

types and constraints, as shown in figure 6.10 and stores them locally in a context

registry. A key feature of the context registry is that the context services are classified

in relation to their context types, representing a snapshot of an application‟s context

requirements.

// Receive the data packet

services = recvdPacket.getBytes.getServices();

// Get the context type and user constraints

type = services.getType();

constraints = services.getContraints();

Figure 6.10 - Processing a context discovery packet

In addition, the CSP listens for service announcements dispatched by entities within

the environment and maintains a context state table relating to the context types

currently available. This operates as a collection of contextual sources so that the

context manager is able to create bindings between applications and services based on

the stipulated requirements.

Context Discovery Packet

Type Description Host:Port Interface Details Expires

Location GPS localhost:6000 http://localhost/gps.xml 1000

Location Nibble localhost:7000 http://localhost/nibble.xml 30

Camera QuickCam 194.80.35.25:2000 http://194.80.35.25/cam.xml 300

Table 6.1 - Context service state table

The services available are enumerated and matched against the services requested by

a client application. A service match based purely on context type results in a further

query to inspect and evaluate the properties of the service. In more detail, during this

stage the context constraints specified by a user determine the suitability of available

services, for example, table 6.1 (shown above) identities two location services and a

camera service available for use by a client application. The method of evaluating a

service is similar to the way in which the GUIDE prototype evaluates the suitability of

a particular tour. More specifically, the constraints and parameters specified are

compared to the properties offered by a prospective service. Successful attribute

matches result in a positive increase in the weighing associated with that service. The

service with the best overall weighting is selected and returned to the client

application since this is considered the most appropriate service available at that time.

The following pseudo-code summarises the service selection process.

 146

for all discovered services stored in the context state table

{

 if (user specified context type equals context service type)

{

 get user-profile(constraints)

 evaluate the service(constraints)

 store result in a temp Vector

}

else

{

 no match found

}

enumerate vector and select service with highest weighting

return service to user

}

Figure 6.11 - Context service evaluation

From here, by default, the CSP will aim to select a service automatically based on the

user requirements, thus avoiding the need to interrupt a user on a regular basis since it

is assumed that the environment is unreliable and that frequent service disconnections

are common. However, in the event that several services are perceived to be relevant

and the CSP is unable to select a service automatically, a summary containing the

interface descriptions are provided to the user. A user is therefore able to select the

required service manually by following a hypertext link (shown earlier in figure 6.5).

The selection of a context service, either manually or automatically, results in the CSP

returning to the application the details pertaining to the communications channel, i.e.

hostname and port number. In the event that a more suitable service (based on the

user requirements) becomes available, the CSP is able to dynamically adapt to using

the new service. In operation, all the handover actions are triggered by the receipt of

a service announcement packet from an advertising context service. The service is

registered with the CSP context manager and, if deemed more appropriate, the CSP

removes the registration from its predecessor and subscribes to the new service.

Although users are notified of service changes at the interface level, any modification

to the communications channel remains transparent, as shown in figure 6.12 below.

GUIDE II GUIDE II

localhost:6001 localhost:6001

hostA:6500 hostB:6500

EMSMCM

Discovery

EMSMCM

Discovery

Figure 6.12 - Transparent context service re-binding

 147

6.3.1.3 Analysis

This demonstration highlights one of the features of the CSP, mainly, its ability to

dynamically reconfigure the services offered to client applications based on a user‟s

stipulated context. In summary, the mechanisms provided by the context service

based architecture to support the automatic configuration of context services includes:

 Context Specification: The use of standard service templates to describe

services allows client applications to be designed generically in terms of

context types, such as location, people, activity, weather, etc;

 Context Constraints: The use of context constraints governs the service

selection process based on the current configuration, and;

 Context Discovery: The use of a simple context discovery mechanism enables

applications to make run time bindings to context services.

As a result, the use of context is more explicit and client applications can be designed

with context types and not specific hard-wired services in mind. Furthermore,

adaptation based on user stipulated requirements provides a mechanism in which

users are able to control, more readily, the constraints under which adaptation should

take place.

6.3.2 Scenario Two: Maintaining a consistent environmental

representation

6.3.2.1 Introduction and Motivation

This scenario considers a situation in which a user of the GUIDE II application begins

an application session using a mobile end-system and then, during the session,

switches to an alternative end-system affording different device constraints. This

scenario will therefore demonstrate how the CSP is able to manage an application‟s

context and state information relating to an active session. More specifically, it

affords mobile users with the ability to roam between devices during the course of a

day and facilitates access to their personal context irrespective of their device

constraints. These operating conditions provide a sound basis for evaluating the

architecture‟s effectiveness for maintaining a user‟s view of the environment despite

 148

fluctuations and overcomes a limitation of the original GUIDE application which,

despite maintaining state relating to a range of environmental contexts including a

user‟s profile, did not persistently store or allow this state to be retrieved trivially.

6.3.2.2 Implementation

The test configuration is summarised in Figure 6.13 and depicts two instances of the

GUIDE II application executing first on a GUIDE unit and second on a Compaq

iPAQ Pocket PC.

Context Repository

Context Server

GUIDE II

TeamPad

Context Server

Compaq iPAQ PDA

EMSMCM

Discovery

GUIDE II

Pocket IE

EMSMCM

Discovery

Figure 6.13 - Application configuration

The initial application session is executed on the GUIDE unit and all the initial

session state pertaining to the active session is stored on the end-system locally in the

CSP. When a user terminates the GUIDE II application the save() method is

invoked in the local CSP. This generates a globally unique identifier which is

returned to the application and saved locally (i.e. in the current implementation, the

unique identifier is saved to the local file system). This identifier, along with the

username and password, is used to identify the session uniquely. Once a unique

identifier has been created, the session state is forwarded to the central context

repository via the local context server.

 149

Application

save () ;

get

username

and

password

generate

unique id

(uid)

store uid

save

state to

server

central

store

terminate

CSP

User Profile local disk

Figure 6.14 - Saving application state

A second instance of the GUIDE II application initialised on the same end-system will

be able to gain fast access to the previous session state by issuing a restore command,

which retrieves the session state from the local CSP. Should a second instance of the

GUIDE II application be initialised on a different end-system, such as an iPAQ

Pocket PC, then the restore() command processed by the local CSP will cause an

exception to be thrown since no state exists locally. Following this an explicit request

(containing the identifier) is forwarded to the central context repository along with a

user‟s username and password pair, since the identifier will not be recognised locally.

The central context server will then validate the supplied credentials with those stored

in the repository. A successful match will result in the state being returned to the

local CSP. The session can then be accessed using the new mobile device with the

session continuing as normal with any previous state restored. However, an

unsuccessful match will result in the GUIDE II application requesting that a user

create a new session, since it is assumed that no previous state exists and therefore the

user must be new to the system. Figure 6.15 provides a summary of this process.

restore (user , password, uuid) ;

yes

Application

get

username

and

password

retrieve

from

server

central store

initialise

CSP

Local Store

credentials

valid

no forward

to conetxt

server
return state

yes

no, therefore

return null

Figure 6.15 - Restoring application state

 150

6.3.2.3 Analysis

The roaming of application sessions between mobile devices was not supported within

the original GUIDE implementation, since application state was maintained locally

and unavailable to other instances. However, this demonstration has shown that,

through the use of several simple method calls, namely save() and restore()

application state can be readily made available to multiple application sessions while

maintaining user privacy. In the current implementation, the security measures are

through the use of a username and password pair, although in the next chapter (see

section 7.3.4) an extension of this approach is detailed, which is currently work-in-

progress as part of the GUIDE II project [Friday,01b]. The GUIDE II project aims to

provide secure and trusted access to distributed services via a wireless (802.11b)

infrastructure. The overall approach is based on a modified Mobile IPv6 protocol

stack that uses packet marking and network level packet filtering at the edge of the

wired network to achieve this objective.

6.3.3 Scenario Three: Supporting shared access to context

6.3.3.1 Introduction and Motivation

This scenario investigates how the use of the CSP supports the sharing of context

between system components (i.e. users) which can be used to support cooperation

between geographically distributed users in a mobile environment within the GUIDE

system. This encompasses a number of key issues including: supporting the sharing

of location context (requirement R14), maintaining user privacy (requirement R4),

presentation of location context (requirement R12) and managing the storage of

positioning information (requirement R7). For the purposes of this scenario, consider

the following situation [Cheverst,00d]:

“John, a visitor to a new city, is looking for a café to visit and uses his personal

GUIDE to assist him. John is shown a series of relevant web-pages containing a

number of cafés ordered based on their proximity and John’s preference for

vegetarian food. However, John is still undecided and reads a list of comments left by

other visitors for the various cafés. Furthermore, John is shown that another GUIDE

user, Mary, is currently located in one of the cafés listed. John would like to have an

 151

unbiased opinion on whether the café is currently quiet and so decides to send a short

message to Mary enquiring about the café.”

Although supporting this kind of cooperation is relevant to the research fields of

CSCW and groupware, to date, little research has investigated the ways in which

mobile context-aware systems can be used to support cooperation and interaction

between users. Moreover, there has been little research into the development of

context-aware systems that enable mobile users to receive an awareness of other users

whose location in the physical world corresponds to those places being explored in the

virtual world.

6.3.3.2 Implementation

To facilitate the sharing of location information between system entities the user

profile component was modified to enable users to explicitly state their privacy

constraints (see appendix A). More specifically, a user is able to stipulate their

privacy constraints relating to the context types of interest when they first initialise the

GUIDE II prototype application. This enables context pertaining to a user‟s location

to be queried by other system entities, providing the access privileges are satisfied.

In order to provide accurate place awareness relating to a given visitor, the system

needs to place the visitor at specific locations, e.g. the City Castle or the Folly Café.

However, the location information provided by original beacon based location

mechanism was not able to provide this granularity of information. In order to

achieve this greater level of accuracy a number of alternative techniques have been

incorporated into the system including, the use of a simple translation service

developed to convert GPS co-ordinates into GUIDE location identifiers [Byun,01]. In

addition, a prototype service based on the Nibble Location service [Castro,01]

(detailed below in section 6.3.5) was also incorporated to provide a means of accurate

positional information.

User Privacy

A key issued raised by this scenario is that of user privacy. Previous experiments

involving location tracking systems, such as the active badge system [Want,92], have

 152

encountered difficulties relating to the unwillingness of users to allow their location to

be known to the system. In the original GUIDE prototype implementation, no state

information regarding the location of clients was made available to third parties and

therefore GUIDE users were given no reason to feel that their location was being

explicitly tracked. Indeed, during an evaluation of the GUIDE implementation no

concerns pertaining to privacy of location were raised [Cheverst,00c]. However,

visitors may feel concerned if they believe that personal context, such as their

location, is available to others and for this reason, mechanisms such as user stipulated

context constraints (Appendix A) enable users to control their anonymity. Figure 6.16

below shows the user interface presented to a user of the GUIDE II application. This

screen forms a part of a larger profile creation wizard that allows a user to stipulate

what context is to be shared and whether or not they wish to remain anonymous.

Figure 6.16 - User selects to remain anonymous to other GUIDE users

Managing User Location

The original GUIDE implementation which stored user location only locally enabled

fast access to this information, even during periods of network disconnection.

However, the longer this period of disconnection the greater the likelihood of the

information becoming out of date or stale. Therefore a group of users all may have

conflicting information pertaining to each other [Cheverst,99b]. Therefore, by

creating a context service, such as the user manager, and storing this information

centrally, location information will be consistent throughout the system and the

management of privacy through access control relatively straightforward. One

possible drawback with this approach is that disconnected visitors cannot access

 153

location information, but given the dynamic nature of this information this is not

expected to be a significant problem.

The mechanism for controlling service scope was based upon the notion of users,

groups of users, and everyone (i.e. public access) and not a geographically controlled,

(i.e. physical space) based mechanism since the notion of sharing files and folders

between users and groups is a well understood desktop metaphor. The rational for

this choice was to ensure that service discovery process was not limited to purely

proximity based discovery and that it should facilitate the discovery of context

services that may not be physically close to a user (i.e. within close proximity). This

mechanism enables services to be universally visible or remain private to particular

user. For example, a user may create a calendar service and limit access to this

service by specifying that only the creator and other (named) work colleagues be able

to access the properties.

User Interface

To represent a user‟s location, the GUIDE II application makes use of hypertext links

within tourist pages. These links facilitate a simple mechanism in which to read or

create new comments associated with a given attraction or user. Furthermore, by

following a link representing a user‟s name, the process of sending a message to that

user is initiated. Figure 6.17 shows how these links appear on a tourist page.

Figure 6.17 - GUIDE II interface presenting location awareness to the visitor

In the example shown above, when a GUIDE user clicks on the name „Keith‟ the send

message dialogue box will appear with the recipient‟s name automatically completed.

Alternatively, a visitor may click on the „collaborate‟ button at any time in order to

 154

discover the location of all users around the city (given the appropriate permissions)

and be able to read their comments, or publish their own comment relating to their

location. Discovering another tourist relies on the use of the COLLABORATE

GUIDE tag, which in turn invokes a search request for type USER. To summarise, the

COLLABORATE GUIDE tag invokes a search request. This is then processed by the

context service that maintains location information for mobile users (i.e. the user

manager service). The context service retrieves the context for the specified landmark

(i.e. it retrieves the user list for the landmark of interest). This context is then filtered

according to the specified access privileges and if the user making the request is

permitted to view the context of the individuals.

6.3.3.3 Analysis

This scenario demonstrated a novel approach for providing GUIDE users who are

exploring an attraction virtually with an awareness of visitors that are physically

located at the corresponding attraction. This extension to the GUIDE prototype

demonstrates how the use of user stipulated context constraints enables an increased

level of awareness between mobile users to be supported. Furthermore, this example

displays the usefulness of the approach supported by the CSP architecture for

enabling collaborative environments to be created more readily.

In addition, further benefits can be demonstrated when considering the use of multiple

applications accessing the common CSP infrastructure, for example, GUIDE II and

the digital In/Out board described in chapter five. Here, the In/Out client

automatically updates the public In/Out web board once a location update is received

on a user‟s mobile device. If a location update is not received from the infrastructure

for N
3
 seconds the In/Out clients updates the public board to indicate that the current

context is temporarily unknown. By registering with the CSP the context type of

interest (i.e. location service) both applications automatically have access to the

context-sensing infrastructure. Furthermore, the layer of abstraction (indirection)

between applications that use context and system components that provide context,

enables the CSP to function as a context portal, that is, an access point responsible for

3
 In the current implementation, N is set to 120 seconds (i.e. 2 minutes).

 155

managing context pertaining to both applications. One advantage of this approach is

that several executing applications accessing the context space are consistent. For

example, given the above scenario involving both the GUIDE II and In/Out

applications, a consistent view of the operating environment is ensured since any

location update received by the CSP is propagated to each individual application.

Finally, consider again the Ubichat application presented in chapter five for sending

and receiving instant messages. Through the explicit registration process supported

by the CSP, the Ubichat application is able to inform system entities of its device

constraints (i.e. share context). This enables remote users to determine their

colleague‟s status and, more importantly, their operating constraints. This clearly has

implications in relation to user expectation and usage patterns when you consider a

situation in which a user sat at their workstation is communicating with a colleague

using a mobile phone. Clearly, the cost (in terms of the communication constraints in

addition to cost) of sending a message from a mobile phone may affect the type of

communications taking place between the two parties. More specifically, the user at

their terminal is aware of the constraints of their mobile colleague; their expectation in

terms of speed of response, length of reply may be much lower.

6.3.4 Scenario Four: Supporting disconnected operation

6.3.4.1 Introduction and Motivation

This scenario considers a situation in which a user of the GUIDE II application

experiences a period of disconnection from the network. During the disconnected

period, a contextual source disseminates a series of asynchronous events destined for

several mobile users. In addition, a user also tries to make an explicit request for a

resource (i.e. synchronous communication is attempted). This scenario therefore

explores how the CSP is able to provide support for disconnected operation.

The motivation for this scenario arises from the GUIDE prototype described in

chapter three. Despite the use of a broadcast approach to data dissemination and the

use of distributed caches to support disconnected operation, the GUIDE application

provides no guarantees relating to the reliability of the information model and it is

possible for an application to be using stale information. Furthermore, explicit

 156

requests for resources made during periods of disconnection from the network are

unable to be satisfied and any contextual updates to the information model that occur

during disconnected operation are not seen at the application level. This scenario will

demonstrate how the session management features provided by the CSP aid

applications operating in unreliable environments. More specifically, it describes the

features provide by the common infrastructure to retrieve context despite fluctuations

in the environment so that application developers do not need to handle this on a per-

application basis.

6.3.4.2 Implementation

The test configuration is based around the GUIDE II application detailed in section

6.2. Two experiments will be detailed. The first demonstrates how the CSP supports

disconnected operation when client applications use the synchronous (i.e.

request/response) style of interaction with context services. Second, the asynchronous

(i.e. publish/subscribe) means of communication will be demonstrated.

Synchronous Communications

During disconnected operation explicit requests for resources rely heavily on the state

manager since this component acts as a local cache. An explicit request for a data

item not resident within the local cache results in a cache miss. Since a cache miss

cannot be serviced or masked from the user, the requested item is stored in a cache

miss register (modelled as a Vector in Java) and the request initially appears to fail at

the application or user level, as shown in figure 6.18.

 157

Figure 6.18 - Representing a cache miss at the application level

However, the state manager periodically attempts to establish a communications

channel with a remote resource and endeavours to retrieve all requested resources

once a network connection is re-established. Although this feature appears

transparent to the user, they are able to control how and when the results of a cache

miss are delivered. More specifically, the user is able to specify (during the user

profile creation process described in Appendix A) one of three available options that

allows the delivery of information to be tailored [Cheverst,01d], including:

 Push: A user request for data push will ensure that any item will be forwarded

to a client application immediately once available.

 Notify: The notify option creates a level of indirection between a user and a

new event or resource becoming available. In this mode of operation, an

event, perhaps triggered by the availability of a resource, is forwarded to the

client application and the user is then able to decide whether or not they wish

to view the update at that time.

 Cache: This option will result in no visible update at the user interface level

but will simply store locally (i.e. cache) the updated information, perhaps for

later retrieval.

The management of the local cache is further aided through the use of context types,

timestamps and expiry information. These attributes are used to define resource

mutability in order to aid cache management. More precisely, the mutability of a

resource can be used in the cache replacement policy, for example, a tourist hypertext

 158

page of information representing a café may have a short expiry time. This may be

used to indicate that there is little need to cache this particular data item since it is

highly likely that the content changes rapidly (perhaps due to changes in the menu

during the course of a day). However, hypertext resources such as history related

pages for city landmarks or geographic maps of an area of the city may be cached

since it is unlikely that these resources will have their content updated on a regular

basis and may therefore reside within the local cache.

Figure 6.19 - Pushing an event to a user of the GUIDE II application

Asynchronous Communications

To support asynchronous forms of communication an application registers with the

CSP in order to subscribe for events (as described in section 5.2.1.2). For the

purposes of this example, assume that a service is available that announces the

availability of tourist attractions, such as Lancaster Castle. While this is Lancaster‟s

most popular tourist attraction, it is also home to a court room. Therefore, this

particular landmark has a number of different tours available to tourists depending

upon whether or not the courts are in session that day. A tourist interested in visiting

Lancaster Castle may choose to have notifications relating to the state of the attraction

delivered to their GUIDE application.

Assuming that a user is interested in receiving context events for Lancaster Castle,

then should disconnection from the network occur the client application will be

unable to receive context updates. However, the CSP provides two mechanisms for

enabling context-aware applications to determine if an event was disseminated during

a disconnected period.

 159

The first mechanism is triggered autonomously whenever the CSP detects that

network connectivity has been re-established. Once connectivity is detected, the

generic get(String name) method of the BaseContextService class may be

invoked to determine the current event identifier (i.e. sequence number) for that

context service. Invoking this generic method requires the specification of the context

service attribute that is to be queried. In this instance a call to get(“eventId”);

will result in the context service returning the current state of that attribute. The result

can then be evaluated against the current value for the event identifier stored locally in

the CSP. If the identifiers are equal, then no events have been missed during the

disconnected period. However, should a lower event identifier exist locally, then CSP

may invoke the replay(Context); method in order to request the re-transmission

of those events dispatched during the disconnected period.

Alternatively, should the CSP receive an event before it detects network connectivity

(since the CSP checks periodically for network connectivity) then the incoming event

is processed and the event identifier determined. If the event identifier does not

directly succeed the current event id stored locally, then it is assumed that an event (or

events) have been missed. In this instance, the replay(Context) method may be

invoked and the current event is stored temporaily and processed once the previous

events have been processed.

6.3.4.3 Analysis

This scenario has demonstrated that the use of the CSP provides applications with a

mechanism for supporting disconnected operation when considering both

synchronous and asynchronous forms of communication. Synchronous

communication is supported using context-based cache management, that is, the

caching of data items based on their context type, expiry and timestamp context to

represent their resource mutability.

Asynchronous communication is supported by making additional use of sequence

numbers (or event identifiers) as a valuable form of context. The combination of

these attributes provides the CSP with enough information to determine if any context

events have been disseminated during a period of network disconnection and to

invoke the replaying of events.

 160

One limitation of the current implementation is that the delivery of context events is

controlled on a per application basis. More precisely, a user is able to control, using

the push, notify and cache attributes, when context events are to be delivered;

however, the chosen attribute is applied to all events received by that application. A

more appropriate approach may allow individual applications to specify multiple

constraints relating to different context types. For example, location updates may be

required to be pushed and delivered immediately but other types of context events

may be less important. Allowing a user to control how and when adaptation should

take place based on complex policies is discussed further as an area of future work in

chapter seven (see section 7.3.3). In addition, it is assumed that events replayed after

connectivity has been re-established do not affect any other aspect of the context-

aware system. More specifically, all events are assumed to be independent and do not

affect other entities within the system. Investigating how event playback affects other

entities within the system is also considered an area of future work.

6.3.5 Scenario Five: Supporting Application Extensibility and Portability

6.3.5.1 Introduction and Motivation

The above scenarios provide a mechanism for evaluating the key features of the

architecture detailed in chapters four and five. Moreover, they consider the execution

environment from an application‟s perspective and investigate how to manage the

availability of new resources within a distributed environment. Of equal significance

is exploring the application developer‟s perspective and to explore the flexibility of

the architecture in terms of deploying newly developed services.

This issue of system flexibility will be addressed by demonstrating application

extensibility, portability and evolution in turn. This has been partly addressed in 6.2

which demonstrated the architecture in use on a variety of platforms, physical

environments, and portable devices (i.e. pen tablet, PDA, mobile phones).

Extensibility and evolution will be addressed simultaneously by describing the steps

involved for application developers to create service templates and generate context

services. More specifically, this will involve the integration of the Nibble location

system [Castro,01] in order to provide the GUIDE application with an alternative

location technology.

 161

6.3.5.2 Implementation

The Nibble location system is an indoor location system for mobile devices equipped

with a wireless network card developed in the Multimedia Systems Laboratory at the

Department of Computer Science, UCLA. The current implementation is limited to

supporting Lucent Orinoco cards running under Microsoft Windows. The Nibble

location service uses Bayesian networks to infer the location of a wireless client from

signal quality measures. Furthermore, a device running Nibble can "remember" a

location simply by associating a name with that location. Nibble utilises the signal

quality received from access points detected at each location and incrementally builds

a Bayesian network which can be used to calculate the most likely location for a

signal quality "signature". The initial implementation has been used to provide

location accuracy of approximately 10 feet apart (i.e. office room granularity),

although the performance is highly dependant on factors such as building topology,

number of access points, path effects and noise.

Although the current implementation is very limited, it serves a useful purpose in

demonstrating the relative ease with which a context service can be created and

incorporated into an already executing system. The limited Nibble API allows

instances to be created and terminated through the use of on() and off() method

calls respectively. Once executing, method calls to getLocation() or

getDistribution() may be used to return the most likely location or the

distribution strings, as shown in figure 6.20.

// Create an instance of the Nibble Location Service

Nibble thisNibble = new Nibble();

thisNibble.on();

// Get the location and distribution

String location = thisNibble.getLocationName();

String distribution = thisNibble.getDistribution();

// Stop the Nibble location service

nibble.off();

Figure 6.20 - Creating and using an instance of the Nibble location service

Let us assume that a location service offering similar functionality to that of the

original GUIDE beaconing service is to be created. In essence, this service is to

provide a string representing a location to client applications obtained by querying the

Nibble location described above. The location service API provides applications with

 162

the method getLocation() to obtain a positional update. Other information

represented by the interface includes the accuracy provided by the service and the

frequency of updates supported by the service. To create a location context service an

XML representation describing the service interface is first created, as shown in figure

6.21.

<?xml version="1.0"?>

<context-service>

 <serviceType>Location</serviceType>

 <serviceId>Nibble</serviceType>

 <serviceChannel>

 <host>localhost</host>

 <port>6000</port>

 </serviceChannel>

 <eventChannel>

 <host>localhost</host>

 <port>6100</port>

 </eventChannel>

 <serviceStateTable>

 <stateVariable>

 <name>Location</name>

 <dataType>string</dataType>

 </stateVariable>

 <stateVariable>

 <name>Frequency</name>

 <dataType>integer</dataType>

 </stateVariable>

 </serviceStateTable>

 <actionList>

 <action>

 <name>getLocation</name>

 <paramterList>

 <paramter>null</paramter>

 <paramterType>null</paramterType>

 </paramterList>

 <returnType>String</returnType>

 </action>

 <action>

 <name>getFrequency</name>

 <paramterList>

 <paramter>null</paramter>

 <paramterType>null</paramterType>

 </paramterList>

 <returnType>integer</returnType>

 </action>

 </actionList>

</context-service>

Figure 6.21 - Creating a Nibble location service interface

Once an interface description exits, an application developer needs to create a

ContextService Class that inherits the properties of the generic

BaseContextService class and takes as a parameter the location of the XML file

description, as a URL. This will then enable the properties of service to be advertised

and a description made available to system entities. A running instance can be

created as follows (see figure 6.22). In essence, the class constructor takes as a

 163

parameter a URL that represents an XML description of the service available. This

file is then parsed and a Java object representing the context service created.

Following this, several threads of execution are created which begin advertising the

services to the rest of a system and listen for incoming service requests or

subscriptions.

// Create a Location Context Service (e.g. Nibble Location Service)

ContextService gps = new ContextService(“file:///d:/gps.xml”);

………………

// Class constructor

thisService = new ContextService(stringParam);

// public void run()

{

 // Parse XML description and create service state table

 thisService.parse()

 // Begin Service Aanoucements

 thisService.announce();

 // Listen for requests

 thisService.receive ();

}

Figure 6.22 - Instantiating a context service

Finally, a developer needs to implement the service specific communication to obtain

data from the Nibble Service itself. Therefore, a method call to the getLocation()

method of the Nibble Context Service invokes a

thisNibble.getLocationName() call of the getDescription() method of

the Nibble location system. Once executing, the service is available for requests and

able to deliver context updates to interested (i.e. registered) client applications. This

is achieved by periodically invoking the thisNibble.getLocationName()

method (e.g. every 3 seconds).

6.3.5.3 Analysis

The level of abstraction (indirection) created by deploying a location context service

ensures that any changes to the underlying Nibble location system do not adversely

affect the use of the service by client applications. Furthermore, it would be possible

to modify the Nibble context service to make use of any technology to obtain the

location information while the service interface remains unchanged since this is

transparent to the client applications. Furthermore, the use of a context service

 164

facilitates the storage of context updates and so client applications are able to query

context stored.

6.3.6 Summary

This section has introduced a number of real scenarios that allow the key features of

the context-service based architecture to be evaluated using the GUIDE II prototype

applications. More precisely, each of the scenarios described above demonstrate the

overall suitability of the approach detailed in this thesis when applied to a complex

mobile context-aware system. Furthermore, it can be seen by directly comparing the

GUIDE prototypes that the use of the CSP better facilitates execution in a dynamic

environment. First, the relative ease with which a complex context-aware system,

such as the GUIDE system, can be readily extended and modified through the use of

context services was demonstrated. Following this, support for the introduction of

new context services was explored including how the use of context constraints aids

the process of context discovery. Maintaining a consistent view of the environment

and supporting shared access to context was then demonstrated by showing how the

CSP enables a context-aware application to maintain state between application

sessions and devices. Support for disconnect operation was then evaluated and in

particular how the CSP supports both synchronous and asynchronous forms of

communication. Finally, extensibility was evaluated by demonstrating the support

provided for designers of mobile context-aware applications. The remainder of this

chapter provides an evaluation of the overall context-service based approach with

respect to the requirements identified in chapter four.

6.4 Evaluation With Respect To Requirements

This section evaluates the extent to which the service based architecture presented in

this thesis fulfils the requirements outlined in chapter four. For the most part, this is a

relatively straightforward process, with a summary of the evaluation presented in

table 6.2. However, it is necessary to supplement this with a general discussion of

issues arising; accordingly this table is complemented with the following discussion

which, where appropriate, refers to the above scenarios and the specific components

of the architecture that address each requirement.

 165

Requirement Satisfied

R1: Supporting User and Device Mobility

R2: Support Persistence of Application and

User State

R3: Support Flexible Interaction Models

R4: Security and Privacy of User Data

R5: Extensibility

R6: Modelling the Environment

R7: Management of Shared and Distributed

Data

R8: Configuration and Interoperability

R9: Context Capture

R10: Context Interpretation

R11: Infrastructure Transparency

R12: Context Presentation, Adaptation and

Persistence

R13: Ability To Support Awareness

R14: Ability To Support Context Sharing

R15: Specification and Representation of

Context

 = yes. = partly. = no.

Table 6.2 - Fulfilment of Requirements

First, the service based architecture fulfils requirement R1 through the use of the

context service provider (CSP). This component, in essence, acts as an agent on

behalf of executing applications and maintains state pertaining to the operating

environment. Furthermore, it can also be regarded as a portal to the context space

since it provides a representation of the context services available to an application at

any given time. Furthermore, the session management features provided by the

session manager component afford application-level support for disconnected

operation and synchronisation of state through the replaying of any events that may

have occurred during disconnection form the network. Through the provision of a

layer of abstraction between the higher level applications layer and the lower level

service infrastructure requirement R2 has been satisfied, since, by utilising the CSP

user and application state is retrievable from the context repository from any

application executing on any device.

The modifications to the communications medium introduced in chapter three enable

a diverse set of communications possibilities to be achieved satisfying requirement

R3. Applications are able to take advantage of an asynchronous event based

(publish/subscribe) model to autonomously receive context updates, in addition to the

scalable broadcast approach to data dissemination described in chapter three.

 166

Furthermore, a synchronous request/response (client/server) model of interaction

between applications and a context source also exists and includes, though the

transparent session management features afforded by the CSP, improved support for

disconnected operation by employing a context-based caching mechanism (based on a

variety of contextual factors).

Requirement R4 is satisfied since user state is stored on a trusted central server and

access strictly controlled through a user specified profile. Furthermore, since users

explicitly state their context interests and specify their privacy constraints (based on

the notion of user and group privileges), they have ultimate control over how their

personal context is utilised and shared amongst other users. Requirement R5 is

partially satisfied since application developers are free to develop and instantiate

context services independently from the rest of the system. The use of context

services represented in XML support the incremental development of context services

without adversely affecting any client applications (requirement R6). Despite an

environment model not being an implicit element within the CSP architecture, the

geographic information model detailed in chapter three facilitates the geographic

modelling of contextual entities through its service interface. This geographic model

serves as a valuable mechanism for calculating relationships between system entities

and the standard interface enables access to the navigation service to be gained from a

range of applications. Furthermore, the visual editor described in [Franz,98] enables a

geographic information model to be easily created and deployed.

Requirement R7 was demonstrated by the example detailed in scenario two. Here, it

was shown how the CSP API enables client applications to maintain state pertaining

to application sessions despite user and host mobility. Furthermore, a mobile user is

able to continue operation and retrieve application state even when changing between

mobile end-systems. Configuration and interoperability (requirement R8) were

addressed by scenario five, and how the infrastructure could be utilised to enable a

context service to be rapidly deployed and utilised by a client context-aware

application. Furthermore, the CSP architecture was implemented and tested using a

variety of target platforms and devices to illustrate its flexibility.

Requirement R9 was demonstrated through the use of generic service interfaces

exposed to client applications. This facilitates a wide range of transparent context

 167

capture techniques to be supported. The separation of concerns that exists allows

context gathering in a bespoke manner to be hidden from an application since, to a

large extent, this is irrelevant to a user of a service. Furthermore, services, both

physical devices and virtual entities, are modelled in the same manner thus providing

a consistent means for representing, communicating with and utilising context

services. In the current implementation, the CSP makes use of the logical operators

“AND”, “OR”, “GREATER”, “LESS” and “EQUALS” in order to create semantic

relationships and situations and to partially satisfy requirement R10. In addition to

this, application designers should be able to specify more complex composite events

or situations in order to better simulate the complex interactions which occur within

the real world. This is tightly coupled with requirements R6 and R15 and discussed

further as an area of future work in section 7.3.2.

Infrastructure transparency (Requirement R11) is supported through the use of

technologies such as Java, XML and HTTP, since they afford device and platform

independence. Context presentation, adaptation and persistence are largely

application specific features. However, the context management component of the

CSP includes a mechanism to store context on a per application basis, thus providing

application developers with a mechanism for querying persistent context state.

Furthermore, the context service abstraction provides a degree of local storage and

facilitates some level of persistent state for context sensing devices (e.g. a humidity

sensor).

The role of context feedback to aid environmental awareness still remains a large area

for exploration; however, the use of user profiles as a mechanism to specify privacy

controls in a context-aware environment has been demonstrated. Furthermore,

coupled with the use of device awareness, more interactive and collaborative

applications are possible since increasing the level of environment awareness

increases the accuracy to which system entities, including users, can be represented.

The sharing of context between executing applications was demonstrated in section

6.3.3. It was argued that a clear benefit exists if applications are able to share the

context sensing infrastructure. Furthermore, less communications burden is placed on

context services to manage context updates to multiple applications residing on a

single device. The generic specification and representation of context entities was

 168

partially addressed through the use of XML as a way of describing context services.

However, relating to requirement R10, this is an area for future work detailed in

section 7.3.2.

6.5 Summary

This chapter has described an evaluation of the context-service and the CSP detailed

in chapters four and five. The context-service was evaluated using, as a test vehicle,

the GUIDE II prototype application. More specifically, the evaluation sought to

qualitatively examine the flexibility and overall effectiveness of the context service

provider based on several real-world scenarios. The realisation of the GUIDE II

prototypes used as a case study have been a valuable contribution to this work in

itself. First, they have demonstrated the practical benefits of the approaches detailed

in the previous chapters when applied to a large scale context-aware system. Second,

they provided a basis for the evaluation of the architecture and for the validation of

the requirements.

The author believes that, in general, the features provided through the use of context-

services successfully verify these requirements, in particularly, in terms of supporting

context-aware applications in dynamic and unpredictable environments. Moreover,

through a direct comparison of the two GUIDE prototype implementations, it has

been shown how the use of context services and the CSP has promoted rapid

development and deployment of services and reduced the tight coupling originally

present between an application, its functionality and the hardware infrastructure.

More specifically, the abstraction focuses on computational entities and sources of

contextual information as services offering context (state), properties and actions

which may be discovered, utilised and manipulated dynamically by client

applications. Finally, system flexibility was demonstrated by engineering and testing

the architecture and client applications using a range of different target platforms.

The final chapter (chapter seven) presents the conclusions of this thesis before

identifying several areas of future work, some of which are currently in progress at

Lancaster and build upon the ideas presented in this thesis.

 169

Chapter 7

Conclusions

7.1 Summary of the Thesis

This thesis has investigated the use of a context service based architecture as a

mechanism to support context-aware applications destined for use in mobile

environments. More specifically, this thesis has identified and considered a set of

requirements for building a service to support and simplify the development of mobile

context-aware applications. A prototype architecture based on the identified

requirements has been introduced and detailed using the concept of context-services

and a context service provider (CSP). The architecture has been evaluated using the

Lancaster GUIDE system as a research vehicle, a fully operational real tourist

application affording personalised information, navigation and interactive services to

visitors to the city of Lancaster from a range of portable end-systems.

The introductory chapter presented the broad areas of research pertinent to this thesis.

First, the recent advances in personal computing and communications technologies

were detailed following which the terms context and context-awareness were formally

introduced. It was then argued that little support currently exists for context-aware

applications within the mobile computing domain and that current approaches are

generally application specific, static in nature, do not suit a ubiquitous service

 170

environment and are often confined to indoor research laboratories. Therefore, by

providing flexible and extensible mechanisms to support context-aware applications,

rapid prototyping, real world deployment and evaluation will eventually lead to a

further understanding of the higher level issues relating to the implications associated

with ubiquitous service environments.

The next chapter (chapter two) presented a survey of the two main research areas

which this thesis combines. First, current support for mobility within distributed

systems was examined and, in particular, approaches to supporting disconnected

operation, information dissemination and techniques for dynamic discovery were

described as pertinent areas of research when considering ubiquitous services.

Secondly, an in-depth examination of context-aware systems and architectures was

presented in relation to the context-aware life cycle: context discovery, context

selection and context use [Schilit,95]. In particular, it was noted that current systems

are not easily evolved and are very inflexible with regards dynamic environments.

Chapter three detailed the GUIDE system [Mitchell,98], a unique city-wide wireless

testbed for conducting research into mobile and context-aware computing and used to

investigate the use of context-awareness as a technique for supporting tourists. In

addition, this chapter described how the GUIDE system has made possible research

into a number of key areas including: large scale wireless infrastructure deployment,

mobile computing and context-aware concepts evaluation, human factors and user

field trial analysis. Furthermore, this initiative afforded an infrastructure on which to

prototype and deploy applications outside of a laboratory environment.

Following this, chapter four explored the use of context services for supporting the

development of mobile context-aware applications. Initially, a comprehensive set of

requirements was derived by analysing both the key aspects detailed in chapter two

with a critique of the GUIDE prototype implementation. Following this, the design of

a context service based architecture was described motivated by a critique of the

GUIDE implementation.

Chapter five described the implementation of a Context Service Provider (CSP) and

prototype context services designed to provide application programmers with a

convenient and flexible mechanism for dealing with context-aware applications

 171

targeted at mobile environments. In essence, support for disconnected operation is

achieved through a combination of session management features and data

dissemination techniques enabling state to be maintained despite fluctuations in the

environment. Furthermore, the context service is capable of adapting to its

environment through the use of context discovery based on user stipulated context

constraints. This form of discovery is more general than the proximity based solutions

detailed in chapter two and enables more complex applications to be realised.

An evaluation of the context service was detailed in chapter six. The primary

objective of this qualitative evaluation was to ascertain the usefulness of the features

provided by the prototype context service. First, the case-study of a mobile context-

aware application, GUIDE II, was presented in which the usefulness and flexibility of

the CSP was demonstrated in relation to several real scenarios before, finally, the CSP

was evaluated with respect to the requirements identified in chapter four.

The remainder of this chapter describes the contributions of the thesis and addresses

several areas of potential future work before presenting some concluding remarks.

7.2 Contributions of the Thesis

7.2.1 Major Contributions

7.2.1.1 A Novel Architecture Supporting Mobile Context-Aware Applications

An important contribution of this thesis is the design, implementation and evaluation

of an architecture capable of supporting mobile context-aware applications. The

motivation for the architecture originates from the observation that both the research

field and the telecommunications industry has seen a recent growth of interest in

applications that exploit contextual information; however, current solutions are often

application specific and not well suited to mobile environments. A significant

contribution of this thesis is thus the observation that generic mechanisms are required

capable of supporting the development of context-aware systems given a range of

execution environments.

 172

In support of the need for an appropriate architecture, this thesis provided a

comprehensive survey of the state-of-the-art in a number of vital research domains,

namely, context-aware and mobile computing, and discussed the implications of each

for research into the next generation always-on systems. An analysis of the related

work in conjunction with a critique of the GUIDE prototype implementation was used

to identify the main requirements and design goals for an architecture suitable for

mobile context-aware environments.

More precisely, this critique revealed that significant benefits may be gained by

„pushing‟ the context management process into the distributed networked

environment and representing functional entities as context services. As a direct

result, this immediately increases the accessibility of services by users, devices or

applications within a distributed environment. Furthermore, the provision of standard

interfaces coupled with the separation of low level sensors from services and

applications, affords incremental development. As a result, system entities can be

changed dynamically as new sensors, services and devices appear during application

execution without causing any adverse affects. By sharing core-services, as detailed

in chapter six, context-aware applications may be smaller in size since application

functionality can reside within the infrastructure and be shared instead of applications

being single monolithic and self-contained entities.

This thesis proposed a solution that aims to extend and apply the advantages of

current context-aware and mobile computing principles to the development of future

context-aware applications by using the concept of context-services and a CSP

(context service provider) as an abstraction for providing the necessary support for

dynamic environments. Access to the underlying services is controlled by the CSP

which, through an explicit registration process (in which users are able to stipulate

their context interests and constraints), is able to dynamically adapt to the services

made available according to changes in the environmental context. Furthermore, the

session management features of the CSP, including the adaptive communications

protocol, enable an application to maintain access to contextual information despite

rapid fluctuations in the operating environment.

 173

7.2.1.2 Deployment of a Fully Operational City-Wide Wireless Infrastructure

The deployment of the GUIDE wireless infrastructure has enabled large scale user

trials and live prototype applications to be developed. This ubiquitous networked

environment has enabled a number of valuable insights to be gained relating to the

deployment of context-aware applications designed for outdoor city environments.

Furthermore, as a result of the initial infrastructure roll-out phase of the Lancaster

GUIDE initiate, a wealth of experience and valuable lessons have been learnt

including the practical issues relating to deploying wireless 802.11 networks within a

wide area metropolitan environment [Schmid,01], the experiences gained from

supporting a fully operational tourist system [Cheverst,00b] and, techniques suitable

for the user evaluation of a context-aware system [Cheverst,00a].

A significant contribution of this thesis is therefore the development and deployment

of fully operational context-aware system, the Lancaster GUIDE system. The

engineering and re-engineering phases of the complex GUIDE application has

enabled the benefits of the context-service based approach to be realistically

demonstrated within large a real application domain. A further contribution of this

thesis can be found in the evaluation results from the motivating scenarios detailed in

chapter six. In addition to providing a foundation for the evaluation of the context-

based architecture, the realisation of the prototype applications used have also

contributed to the evaluation of the overall approach. The experiences gained from

developing and evaluating these prototypes has enabled a blueprint for future

applications to be created. The evaluation demonstrates the applicability and

suitability of the approach for mobile domains.

7.2.2 Other Significant Contributions

7.2.2.1 The Development of a Contextual Information Model

The development of a contextual information model capable of supporting geographic

and context-sensitive information within a dynamic execution environment presents a

novel and valuable contribution of the work detailed in this thesis. The information

model detailed in chapter three provides a basis for navigation in both real and virtual

worlds in addition to supporting the dynamic updating of contextual attributes

 174

received through context events. More specifically, the information model is capable

of receiving a range of events which may adapt the information dynamically.

7.2.2.2 The Development of an Adaptive Context-Aware Navigation Aid

An adaptive context-aware route guidance tool capable of providing personalised

tours based on a wide range of extensible contextual attributes represents a further

interesting contribution to the work detailed in this thesis. The tour creation

component is able to utilise context such as: visitor interests, selected city attractions,

travel constraints, available time, weather and budget allowance, to achieve the

correct balance between the different demands on a visitor and produce a suitable

personalised city tour. Moreover, since many of the above factors vary over time, the

tour guide component is able to dynamically recalculate the proposed tour during the

course of a single day.

7.2.2.3 Adaptive Communications Protocol

An additional contribution to the work detailed in this thesis is the development and

implementation of an adaptive communications mechanism for data dissemination.

This provides support for a potentially large user community within close proximity.

Furthermore, the protocol extensions detailed in chapter five, which facilitate

application subscriptions to context events, provides a flexible means of

communications for mobile applications which may incur rapid changes in the

communications QoS. This communications protocol provides a variety of interaction

styles suitable for context-aware applications designed for a wide range of execution

environments.

7.2.2.4 User Field Trial Evaluation Results

The research presented in this thesis has verified the effectiveness of context-

awareness as a basis for multimedia mobile computing applications within the tourism

industry. As a direct result of a series of user field trial evaluations of the Lancaster

GUIDE prototypes valuable user feedback has been obtained to further ascertain the

end user requirements for future interactive mobile applications. Furthermore, these

evaluation results have been widely published within the human factors research

 175

community [Cheverst,00a], [Cheverst,00b], [Cheverst,01b] and have formed the basis

for current work-in-progress at Lancaster (as described in sections 7.3.3 and 7.3.4).

7.3 Future Work

This thesis has concentrated on the prototype implementation of the CSP architecture

and the prototype applications that are able to exploit its key features. One of the first

steps to continue the research presented in this thesis must therefore be the extension

of the base CSP architecture to support a wider range of applications. One of the

main research efforts was to establish a suitable initial testbed for research into

context-aware computing in mobile environments. In essence, this environment can

then be used to experiment, (i.e. develop, deploy and evaluate) novel applications

with relative ease. The following sections detail possible research areas that could

further enhance the properties of the CSP architecture.

7.3.1 Unified Context Discovery Architecture

Chapters four and five described the need to support discovery in order to facilitate

application execution in mobile environments. Although the development of a

reliable, scalable and unifying discovery architecture remained outside the scope of

this thesis, it still remains a key consideration to the success of applications within

mobile or ubiquitous service environments.

Since future ubiquitous service environments will be characterised by a heterogeneous

mix of services and technologies, devices and applications, users will regularly need

to interact with multiple, potentially specialised, service location and device

interaction technologies. The current lack of a unifying approach to discovery suited

to the mobile domain suggests that this is a potentially large area of exploration.

Furthermore, any proposed solutions should enable users and clients to readily

discover resources and services across a range of infrastructures and devices, without

requiring any a priori knowledge of the underlying infrastructure or the components

they relate to. More specifically, any solutions should offer a scalable, efficient and,

vitally, usable approach that takes into consideration user demands (i.e. constraints) to

succeed in emerging ubiquitous service environments [Czerwinski,99].

 176

7.3.2 Standardised Context Specification and Modelling

This thesis has detailed how the CSP makes use of the logical operators “AND”,

“OR”, “GREATER”, “LESS” and “EQUALS” in order to create semantic

relationships and situations and to enable decision making to take place. An obvious

extension to this model is to allow application designers to specify more complex

composite events or situations in order to better simulate the complex interactions

which occur within the real world, such as, near, far, inside, opposite. In this way, the

virtual representation (i.e. both semantic and geographic model) of the world may

better represent the physical and computational entities that exist.

This may involve the creation and standardisation of context representation and

modelling. Some initial solutions to modelling context have been proposed in this

thesis and models proposed by Leonhardt [Leonhardt,98] and Jose [Jose,01a] offer

insightful approaches which could be utilised. However, future work, on GUIDE and

within the research community in general, will need to investigate the adoption of

standard models in order to cope with the complex relationships that exist. This effort

should aim to develop schemas (perhaps XML based) and ontologies in order to

derive common syntax and semantics. This may involve the following challenges:

 Identifying useful context types and data formats applicable to a wide range of

context-aware applications.

 Identifying useful predicates applicable to a variety of context-aware

applications and situations.

 Defining common semantic relationships, for example, “near” and “inside”.

 Specifying the granularity and the scope of events.

 Providing suitable access control mechanisms to ensure user security and

privacy is not compromised.

7.3.3 User Controlled and Automatic Adaptation

This thesis has focussed on automatic application adaptation based on a variety of

user stipulated and environmentally sensed contextual attributes. However, future

work could include the incorporation of specific adaptation mechanisms and policy

 177

adaptation techniques such as those found in [Efstratiou,01]. It is expected that the

CSP and the use of context services will accommodate such techniques and practices

without significant alteration. However, the exercise of extension will be useful in

verifying this presumption. One area in which the use of user created adaptation

policies may prove useful is within wireless overlay networks, such as those described

in [Finney,99] and currently under development as part of the Mobile IPv6 Systems

Research Lab (MSRL) [MSRL,01]. This new research initiative is currently

extending the GUIDE wireless infrastructure and aims to supplement high-bandwidth

wireless networking [Cisco,00] with next generation telecommunications networks,

such as HSCSD and GPRS. The overall project aim is to develop and test (i.e.

evaluate) future network and service solutions based around the Mobile IPv6 protocol

[Perkins,96], [Perkins,97]. In essence, this will draw upon many of the experiences

detailed in this thesis as part of the GUIDE initiative in addition to other research

projects at Lancaster such LandMarc [Landmarc,01].

Within this type of environment, applications may be required to adapt to a range of

complex context attributes, for example, a user of video conferencing application

[Mitchell,01] with access to multiple network interfaces may choose their service and

communications channel based on awareness information relating to a remote user‟s

device constraints and the available service providers, e.g. cost based considerations.

Issues such as these again point to the need for a sufficient model capable of

representing a wide range of contexts within a potentially wide area context space.

7.3.4 Trust, Security and Privacy

This thesis has highlighted the importance of security and user privacy relating to user

context. In this thesis a simple username and password approach has been adopted

and, furthermore, the implementation has assumed a trusted and secure network

[Glass,00]. In future versions, which facilitate access to remote data services, the

ability to share access to personal information will need to be investigated in more

depth. In more detail, this thesis has described an access control approach based on

the traditional notion of relationships [Sikkel,97], which is clearly appropriate for

GUIDE, for example, only allowing the sharing of personal information between

members of a family group. However, it may also be interesting to investigate the

 178

issues raised by supporting privacy in relation to place [Bullock,97]. For example, a

visitor may only be prepared to let their location be revealed to others who are in the

same place because the person can implicitly trust the other people in that place. One

example of such a place might be a members-only club. This notion of utilizing

spatial boundaries for access control is reflected in the work on SPACE by Bullock

[Bullock,97]. Consider also the situation in which a visitor might be prepared to be

open to interruption when sitting in a café, but not when rushing around an art gallery

that is soon to close. These simple scenarios demonstrate that there is still a great deal

of potential for exploring the use of context, such as location, to aid decision making

within interactive mobile applications.

In addition, a further drive of the GUIDE II project is to go beyond the notion of

trusted, secure networks and to investigate the issues relating to providing public

access wireless networks. Here, the idea is to open up the wireless networking

infrastructure to citizens of Lancaster such that they might use a range of new

applications using their own personal devices (e.g. laptops, PDAs, cell-phones, etc).

It is hoped that by offering wireless connectivity to citizens a wider community of

mobile users can be established and leveraged for mobile systems research, for

example, supporting school children through a range of interactive educational

applications such as exploring the city of Lancaster at various points in the city‟s

historic past. An initial investigation into the area of public access networks has

provided the following preliminary requirements in terms of the features offered

[Friday,01b]:

 Simplicity and convenience for potential users (i.e. ease of installation).

 Fine grained access control and accounting for service providers.

 Reasonable levels of security and authentication such that users can trust the

system and the system is not vulnerable to exploitation.

 Support unmodified use of legacy Internet applications.

 Scalability in terms of number of users and the extensibility of the system to

cover the metropolitan area.

 179

7.3.5 Tool Support

Among the many benefits of component-oriented software are those of semi-

automated construction of applications or composite components using special tools

or visual environments. The original version of the GUIDE prototype benefited

immensely from the use of a graphical „city editor‟ tool to construct the information

models used by the system [Franz,99]. It is hoped to extend this further to provide a

simple mechanism for specifying and creating context service interfaces. This work

will be based around a series of XML parsers and further dictates the need for a

standard representation of context services (see section 7.3.2). The use of XML as a

specification language enables the creation of context-services to remain

programming language agnostic. A visual tool would have great benefits in terms of

rapid application prototyping, deployment and evaluation and work is currently

underway to develop a prototype as part of the MSRL project [Mitchell,01].

7.4 Concluding remarks

This thesis has observed that the proliferation of personal computing devices,

communications and sensing technologies are rapidly progressing the fields of mobile

and context-aware computing towards the vision of ubiquitous service environments

[Weiser,93]. Moreover, users are operating in highly dynamic and ubiquitous

environments which, in turn, afford continuous access to personalised information and

computational services from any device at any-time.

In this thesis, the author has explored this field of research and presented a mobile

context-aware architecture used to support the development of prototype applications

as part of the Lancaster GUIDE initiative. The design, implementation and evaluation

of this fully operational (i.e. live) tourist system [TIC,01] has provided a number of

valuable contributions to the field of context-aware computing. More specifically,

through a combination of context discovery, awareness, and the use of user stipulated

context constraints, a convenient mechanism to base the development of context-

aware applications has been established. Moreover, this experimental foundation has

been created enabling further exploration into the fields of mobile and context-aware

computing within the context of next generation wireless networks [Mitchell,01].

 180

The key conclusion of this thesis is that only by deploying and using context-aware

systems in real situations can a better understanding and a true appreciation of the

associated implications at the many different levels be realised. Therefore, through a

process of deployment and user evaluation we can, as a community, hope to gain a

better understanding of how users will use mobile applications in the future.

 181

References

[Abowd,97] Abowd, G.D., Dey, A.K., Orr, R. and J. Brotherton, “Context-awareness

in Wearable and Ubiquitous Computing”, Technical Report, Graphics, Visualization,

and Usability Centre, College of Computing, Georgia Institute of Technology, USA.

1997.

[Abowd,99] Abowd, G.D., and Mynatt, E.D., “Charting Past, Present and Future

Research in Ubiquitous Computing”, ACM Transactions on Computer-Human

Interaction, Special issue on HCI in the new Millennium, Vol. 7, No. 1, Pages 29-58.

March 1999.

[Acharya,95a] Acharya, A., Alonso, S., Franklin, M., and Zdonik, S., “Broadcast

Disks: Data Management for Asymmetric Communication Environments”, In ACM

SIGMOD, San Jose, CA USA, June 1995.

[Acharya,95b] Acharya, A., Badrinath, B. R., Imielinski, T., and Navas, J. C., “A

WWW-Based Location-Dependent Information Service for Mobile Clients”,

Technical Report, Rutgers University, July 1995.

[Affective,00] MIT Media Lab, Affective Computing Research Projects Home Page.

http://www.media.mit.edu/affect/

[Allanson,00] Allanson, J., “Supporting the Development of Electrophysiological

Interactive Computer Systems,” Ph.D. Thesis, Computing Department, Lancaster

University, UK, June 2000.

 182

[Alvarion,01] Breezecom Breezenet Product Homepage. http://www.alvarion.com/

[Apple,98] The Apple Newton PDA, http://www.planetnewton.com/

[AT&T,00] AT&T Laboratories Cambridge. The Active Badge System, 2000.

http://www.cam-orl.co.uk/ab.html.

[Backhouse,92] Backhouse, A., and Drew, P., “The Design Implications of Social

Interaction in a Workplace Setting”, Planning and Design, Pages 573-584. 1992.

[Bahl,00] Bahl, P. and Padmanabhan, V. N., “RADAR: An In-building RF-Based

User Location and Tracking System”, In IEEE INFOCOM 2000. Conference on

Computer Communications. Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies, volume 2, pages 775-84, March 2000.

[Baker,96] Baker, M. G., Zhao, X., Cheshire, S. and Stone, J., “Supporting Mobility

in Mosquito Net”, In 1996 USENIX Symposium on Mobile and Location Independent

Computing, San Diego, CA, January 1996.

[Bederson,95] Bederson, B,. “Audio Augmented Reality: A Prototype Automated

Tour Guide”, In the Proceedings of the 1995 ACM Conference on Human Factors in

Computing Systems (CHI '95), pp. 210-211, Denver, CO, ACM. May 7-11, 1995.

[Bennet,94] Bennett, F., Richardson, T., Harter, A., “Teleporting - Making

Applications Mobile”, Proceedings of 1994 Workshop on Mobile Computing Systems

and Applications (WMCSA), Santa Cruz, December 1994.

[Bennet,97] Bennet, F., Clarke, D., Evans, J. B., Hopper, A., Jones, A. and Leask, D.,

“Piconet: Embedded Mobile Networking”, IEEE Personal Communications, 4(5)

pages 42-47, 1997.

[Benyon,97] Benyon, D. R. and Höök, K., "Navigation in Information Space",

Hammond, J. (ed.) Proceedings of Interact 97, London: Chapman and Hall (1997).

[Berners-Lee,94] Berners-Lee,T., Masinter, L., McCahill, M., “Request for

Comments: 1738 (RFC 1738), Uniform Resource Locators (URL)”, available at

http://www.w3.org/Addressing/rfc1738.txt

 183

[Bettstetter,00] Bettstetter, C. and C. Renner. “A Comparison of Service Discovery

Protocols and Implementation of the Service Location Protocol”, In Proceedings of

Sixth EUNICE Open European Summer School, Netherlands. September 2000.

[Blair,97] Blair, G. S. and Stefani, J.B., “Open Distributed Processing and

Multimedia”, Addison-Wesley, 1997.

[Bluetooth,99a] Bluetooth Consortium, “Specification of the Bluetooth System:

Volume 1”, Technical Report Version 1.0 B, Dec 1st 1999.

[Bluetooth,99b] Bluetooth Consortium, “Specification of the Bluetooth System:

Volume 2”, Profiles of the Bluetooth System. Technical Report Version 1.0 B, Dec

1st 1999.

[Box,00] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,

Frystyk, H., Thatte, S. and Winer, D, “Simple Object Access Protocol (SOAP) 1.1”,

Protocol specification available from http://www.w3.org/TR/SOAP/

[Braley,00] Braley, R. C., Gifiord, I. C. and Heile, R. F., “Wireless Personal Area

Networks: An Overview of the IEEE P802.15 Working Group”, Mobile Computing

and Communications Review, 4(1), pages 26-33, 2000.

[Brown,96] Brown, P.J., “The Stick-e Document: A Framework For Creating

Context-aware Applications”, In the Proceedings of the Electronic Publishing, pp.

259-272, Laxenburg, Austria, IFIP. September 1996.

[Brown,97] Brown, P.J., Bovey, J. D. and Chen, X., “Context-Aware Applications:

From the Laboratory to the Marketplace”, IEEE Personal Communications, 4(5):

pages 58-64, October 1997.

[Brown,98a] Brown, P.J., “Some Lessons for Location-Aware Applications”. In First

workshop on Human Computer Interactions for mobile devices (Mobile HCI), pages

58-63, Glasgow University, May 1998.

[Brown,98b] Brown, P.J., “Triggering information by context”, Springer-Verlag,

Personal Technologies 2(1), : pp. 1-9. September 1998.

 184

[Brown,00a] Brown, P.J. and Jones, G.J.F., “Context-Aware Retrieval: Exploring a

New Environment for Information Retrieval and Information Filtering”, Personal

Technologies, Springer, In Press. 2000.

[Brown,00b] Brown, P.J., Burleston, W., Lamming, M., Rahlff, O., Romano, G.,

Scholz, J. and Snowdon, D., “Context-awareness: Some Compelling Applications”,

International Symposium on Handheld and Ubiquitous Computing (HUC‟00),

Submitted for Publication. 2000.

[Brumitt,00a] Brumitt, B., Meyers, B., Krumm, J., Kern, A., and Shafer, S.,

“EasyLiving: Technologies for Intelligent Environments”, In Hans-W Gellersen and

P. Thomas, editors, HUC2000, Second International Symposium on Handheld and

Ubiquitous Computing, Bristol, UK, September 25-27, 2000. Published by Springer-

Verlag as Lecture Notes in Computer Science, vol. 1927, pages 12-29.

[Brumitt,00b] Brumitt, B. and Shafer, S. “Better Living Through Geometry”, CHI

Workshop on Situated Interaction in Ubiquitous Computing, April 2000. Also

submitted to Springer Journal of Personal Technologies.

[BT,01] British Telecommunications plc. BT Open World Product Web Site.

http://www.btopenworld.com/

[Bullock,97] Bullock, A. and Benford S., "Access Control in Virtual Environments",

Symposium on Virtual Reality Software and Technology 1997 (VRST'97) Swiss

Federal Institute of Technology (EPFL), Lausanne, Switzerland. (1997).

[Byun,01] Byun., H., Cheverst, K., Mitchell, K., “Achieving Context Interoperability:

A Multi-layered DTD Approach”, Internal Technical Report.

[Casio,01] Casio GPS Wristwatch. http://www.casio.com/watches/

[Casio,99] Casio Cassiopeia Product Home page. http://www.casio.com/personalpcs/

[Castro,01] Castro, P., Chiu, P., Kremenek, T. and Muntz, R., "A Probabilistic Room

Location Service for Wireless Networked Environments", in Proc. UbiComp 2001,

September 30 - October 2, 2001, Sheraton Colony Square Hotel, Atlanta, Georgia.

 185

[Caswell,00] Caswell, D. and Debaty, P., “Creating Web Representations for Places”,

In Hans-W Gellersen and P. Thomas, editors, HUC2000, Second International

Symposium on Handheld and Ubiquitous Computing, Bristol, UK, September 25-27,

2000. Published by Springer-Verlag as Lecture Notes in Computer Science, vol. 1927,

pages 114-126.

[Chen,99] Chen, D., Schmidt, A., Gellersen, H.W., “An Architecture for Multi-

Sensor Fusion in Mobile Environments”, In Proceedings International Conference on

Information Fusion, Sunnyvale, CA, USA, July 1999.

[Cheverst,98] Cheverst, K., Davies, N., Mitchell, K., Friday, A., “Design of an

Object Model for a Context-Sensitive Tourist Guide”, Proceedings of the IMC'98

Workshop on Interactive Applications of Mobile Computing, Rostock, Germany,

November 1998.

[Cheverst,99a] Cheverst, K., Davies, N., Mitchell, K., Friday, A., “The Role of

Connectivity in Supporting Context-Sensitive Applications”. In Hans-W Gellersen,

editor, HUC99, International Symposium on Handheld and Ubiquitous Computing,

Karlsruhe, Germany, September 27-29 1999. Published by Springer-Verlag as Lecture

Notes in Computer Science, vol. 1707, pages 193-207.

[Cheverst,99b] Cheverst, K., “Development of a Group Service to Support

Collaborative Mobile Groupware”, Ph.D. Thesis, Computing Department, Lancaster

University. 1999.

[Cheverst,00a] Cheverst K., Davies N., Mitchell K., Friday A. and Efstratiou C.,

“Developing Context-Aware Electronic Tourist Guide: Some Issues and

Experiences”, Proceedings of CHI'2000, Netherlands, (April 2000), pp. 17-24.

[Cheverst,00b] Cheverst K., Davies N., Mitchell K. & Friday A., “Experiences of

Developing and Deploying a Context-Aware Tourist Guide: The GUIDE Project”,

Proceedings of MOBICOM'2000, Boston, ACM Press, August 2000, pp. 20-31.

[Cheverst,00c] Cheverst K., Davies N., Mitchell K. & Smith P., “Providing Tailored

(Context-Aware) Information to City Visitors”, Proceedings of International

 186

Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, AH'2000,

Trento, Springer-Verlag LNCS, August 2000, pp. 7-85.

[Cheverst,00d] Cheverst, K., Mitchell, K., Davies, N., Friday, A., “Sharing

(Location) Context to Facilitate Collaboration Between City Visitors”, Proceedings of

Workshop on Interactive Applications of Mobile Computing (IMC), Rostock,

Germany, November 2000.

[Cheverst,01a] Cheverst, K,. Mitchell, K., Smith, G., Davies, N., "Exploiting Context

to Support Social Awareness and Social Navigation", in Proceedings of the Workshop

on 'Awareness and the WWW' at CSCW '00, Philadelphia, 2nd Dec 2000.

[Cheverst,01b] Cheverst, K., Smith, G., Davies, N., Mitchell, K. and Friday, A., “The

role of shared context in supporting cooperation between city visitors”, Computers

and Graphics, Vol. 25, No. 4 (2001) 555-562.

[Cheverst,01c] Cheverst, K., Davies, N., Mitchell, K. and Efstratiou, C., “Using

Context as a Crystal Ball: Rewards and Pitfalls”, Personal Technologies Journal, Vol.

3 No5 (2001) 8-11.

[Cheverst,01d] Cheverst K., Davies N., Mitchell K. and Smith P., “Exploring

Context-Aware Information Push”, in Proceedings of Third International Workshop

on Human Computer Interaction with Mobile Devices (Mobile HCI), 10 Sept 2001,

At IHM-HCI 2001, Lille, France.

[Cheverst,01e] Cheverst K., Davies N., Mitchell K. Davies., “The Role of Adaptive

Hypermedia in a Context-Aware Tourist GUIDE”, Communications of the ACM. To

appear.

[Cisco,01] Cisco Systems Inc. Aironet. http://www.aironet.com/

[Compaq,01] The Compaq iPAQ Handheld Devices Product Home Page.

http://www.compaq.com/products/handhelds

 187

[Coyle,97] Coyle, M., Shekhar, S., Liu, D., and Sarkar, S., “Experiences with Object

Data Models in Geographic Information Systems”, Internal Technical Report,

Department of Computer Science, University of Minnesota, U.S. 1997.

[Czerwinski,99] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D. and

Katz., R. H., “An Architecture for a Secure Service Discovery Service”, In Fifth

Annual ACM/IEEE International Conference on Mobile Computing and Networking -

Mobicom 99, pages 24-25, Seattle, Washington, USA, August, 15-20 1999.

[Dana,98] Dana, P.H., “Global Positioning System Overview”, The Geographer's

Craft Project, Department of Geography, The University of Texas, USA. 1998.

[Davies,94] Davies, N., Blair, G., Cheverst, K., and Friday, A., “Supporting Adaptive

Services in a Heterogeneous Mobile Environment”. In Luis-Felipe Cabrera and

Mahadev Satyanarayanan, editors, Workshop on Mobile Computing Systems and

Applications. (WMCSA), pages 153-157, Santa Cruz, CA, U.S., December, 1994.

IEEE Computer Society Press.

[Davies,98a] Davies, N., Mitchell, K., Cheverst, K. and Blair, G.S., “Developing a

Context Sensitive Tourist Guide”, Proc First Workshop on Human Computer

Interaction for Mobile Devices, Glasgow. March 1998.

[Davies,98b] Davies, N., Friday, A., Wade, S., Blair, G., “L2imbo: A Distributed

Systems Platform for Mobile Computing”, ACM Mobile Networks and Applications

(MONET), Special Issue on Protocols and Software Paradigms of Mobile Networks,

Volume 3, Number 2, August 1998, pp143-156.

[Davies,99] Davies, N., Cheverst, K., Mitchell, K. and Friday, A., “Caches in the Air:

Disseminating Tourist Information in the Guide System”, In Second IEEE Workshop

on Mobile Computer Systems and Applications, New Orleans, Louisiana, 25-26

February 1999.

[Davies,01] Davies, N., Cheverst, K., Mitchell, K. and Efrat, A., “Using and

Determining Location in a Context-Sensitive Tour Guide”, IEEE Computer Journal,

August 2001 (Vol. 34, No. 8) pages 35-41.

 188

[Demers,94] Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M.M. and

Welch, , “The Bayou Architecture: Support for Data Sharing Among Mobile Users”,

Proc Workshop on Mobile Computing Systems and Applications, IEEE. December

1994.(MCSA), Santa Cruz, California, U.S., December 1994. Editor: Luis-Felipe

Cabrera and Mahadev Satyanarayanan, IEEE Computer Society Press, Pages 2-7.

[Dey,97] Dey, A.K., and Abowd, G.D., “CyberDesk: The Use of Perception in

Context-aware Computing”, In the Proceedings of the 1997 Workshop on Perceptual

User Interfaces (PUI '97), pp. 26-27, Banff, Alberta. October 19-21, 1997.

[Dey,98] Dey, A.K., Abowd, G.D. and Wood, A., “CyberDesk: A Framework for

Providing Self-Integrating Context-Aware Services”, Knowledge Based Systems

11(1): pp. 3-13. September 30, 1998.

[Dey,99a] Dey, A.K., Futakawa, M, Salber D. and Abowd, G.D. “The Conference

Assistant: Combining Context-Awareness with Wearable Computing”, In the

Proceedings of the 3rd International Symposium on Wearable Computers (ISWC'99),

pp. 21-28, San Francisco, CA, IEEE. October 20-21, 1999.

[Dey,99b] Dey, A.K., Salber, D., Abowd, G.D., “A Context-based Infrastructure for

Smart Environments”, In the Proceedings of the 1st International Workshop on

Managing Interactions in Smart Environments (MANSE '99), pp. 114-128, Dublin,

Ireland, Springer Verlag. December 13-14, 1999.

[Dey,00a] Dey, A.K., and Abowd, G.D., “CybreMinder: A Context-Aware System for

Supporting Reminders”, In the Proceedings of the 2nd International Symposium on

Handheld and Ubiquitous Computing (HUC2K), pp. 172-186, Bristol, UK, Springer-

Verlag. September 25-27, 2000.

[Dey,00b] Dey, A.K., and Abowd, G.D., “Towards A Better Understanding of

Context and Context-Awareness. In the Workshop on the What, Who, Where, When

and How of Context-Awareness”, affiliated with the 2000 ACM Conference on

Human Factors in Computer Systems (CHI 2000), The Hague, Netherlands. April 1-6,

2000.

 189

[Dey,00c] Dey, A.K., “Providing Architectural Support for Building Context-Aware

Applications”. Ph.D. Thesis, Georgia Institute of Technology, October 2000.

[Dey,01] Dey, A.K., Salber, D. and Gregory D. Abowd, “A Conceptual Framework

and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications”,

Human-Computer Interaction 16.

[Digianswer,00] Digianswer Bluetooth Homepage. http://www.digianswer.com/

[Dix,95] Dix, A., “Cooperation Without (Reliable) Communication”, In Proceedings

IEE Symposium on Mobile Computing and its Applications, England, Vol. 95,

No.219, Pages 41-44. November 1995.

[Dix,99a] Dix, A., Ramduny, D., Rodden, T. and Davies, N., “Places to Stay on the

Move: Software Architectures for Mobile User Interfaces”, Personal Technologies.

1999.

[Dix,99b] Dix, A., Rodden, T., Davies, N., Trevor, J., Friday A. and Palfreyman, P.,

“Exploiting Space and Location as a Design Framework for Interactive Mobile

Systems”, ACM Transactions on Computer-Human Interaction (TOCHI). 1999.

[Dourish,92] Dourish, P. and Bellotti, V., “Awareness and Coordination in Shared

Workspaces”, In Proceedings of ACM Conference on Computer-Supported

Cooperative Work (CSCW „92), Toronto, Canada, pages 107-114. 1992.

[Edwards,99] Edwards, W. K. “Core Jini”, Prentice Hall., Addison-Wesley. 1999.

[Efstratiou,00] Efstratiou, C., Cheverst, K, Davies, N. and Friday, A., "Architectural

Requirements for the Effective Support of Adaptive Mobile Applications", IFIP/ACM

International Conference on Distributed Systems Platforms and Open Distributed

Processing, 4th - 8th April 2000, IBM Palisades Executive Conference Center,

Hudson River Valley (near New York City), New York, USA

[Eldridge,00] Eldridge, M., Lamming, M., Flynn, F., Jones C., and Pendlebury, D.,

"Satchel: Providing Access to Any Document, Any Time, Anywhere", in:

 190

Transactions on Computer-Human Interaction, Special Issue entitled "Beyond the

Workstation: Human Interaction with Mobile Systems", 2000.

[EMC,01] Market Intelligence for the World‟s Wireless Industry Homepage.

http://www.emc-database.com/website.nsf/index/pr000714

[Ericsson,00] Ericsson Mobile Positioning System. http://www.ericsson.com/mps

[Ericsson,01] Ericsson Bluetooth Homepage. http://www.ericsson.com/Bluetooth

[Factoid,01] The Compaq Western Research Lab Factoid Project homepage. Hoe

http://www.research.compaq.com/wrl/projects/Factoid/index.html

[Fels,98] Fels S., Sumi, Y, Etani, T., Simonet, N., Kobayashi, K. and Mase., M,

“Progress of C-MAP: A Context-Aware Mobile Assistant”, Proc. AAAI Symposium

on Intelligent Environments, Technical Report SS-98-02 (1998)

[Finney,96a] Finney, J. and Davies, N., “FLUMP - The FLexible Ubiquitous Monitor

Project”, Proceedings of the 3rd Cabernet Radicals Workshop, Connemara, May

1996.

[Finney,96b] Finney, J. and Davies, N., “The FLexible Ubiquitous Monitor Project”,

Proceedings of the Third Computer Networks Symposium, July 1996.

[Finney,99] Finney, J., “Supporting Continuous Multimedia Services in Next

Generation Mobile Systems”, Ph.D. Thesis, Computing Department, Lancaster

University. 1999.

[Flynn,00] Flynn, F., Pendlebury, D., Jones, C., Eldridge, M. and Lamming, M., “The

Satchel System Architecture: Mobile Access to Documents and Services”, Mobile

Networks and Applications (MONET) 2000, No. 4, Vol. 5, 2000, pp 243-58.

[Forman,94] Forman, G.H. and Zahorjan, J., “The Challenges of Mobile

Computing”, IEEE Computer, Vol. 27, No. 6. April 1994.

[Fox,98] Fox, A., Goldberg, I., Gribble, S. D., Polito, A. and Lee, D. C., “Experience

with Top Gun Wingman: A proxy-based graphical web browser for the Palm Pilot

 191

PDA”, In IFIP International Conference on Distributed Systems Platforms and Open

Distributed Processing (Middleware '98), Lake District, UK, September 15--18 1998.

[Franklin,98] Franklin, M. and Zdonik, S., “ „Data in Your Face‟: Push Technology

in Perspective”, ACM SIGMOD Intl. Conference on Management of Data (SIGMOD

98) Seattle, WA, June, 1998.

[Franz, 98] Franz, M., “Creating Context-Sensitive City Models: A City Editor”,

Diploma Thesis at the Institute of Telematics, University of Karlesruhe, Germany.

[Friday,96] Friday, A., “Infrastructure Support for Adaptive Mobile Applications”,

Ph.D. Thesis, Computing Department, Lancaster University, Bailrigg, Lancaster, LA1

4YR, U.K., September 1996.

[Friday,97] Friday, A., Davies, N., Wade, S. and Blair, G., “Limbo: A Tuple Space

Based Platform for Adaptive Mobile Applications”, Proceedings of the International

Conference on Open Distributed Processing/Distributed Platforms (ICODP/ICDP

'97), Toronto, Canada, 27-30 May 1997, pp291-302.

[Friday,98] Friday, A., Davies, N., Wade, S. and Blair, G., “L2imbo: A Distributed

Systems Platform for Mobile Computing”, ACM Mobile Networks and Applications

(MONET), Special Issue on Protocols and Software Paradigms of Mobile Networks,

Volume 3, Number 2, August 1998, pp143-156.

[Friday,99] Friday, A., Davies, N., Blair, G. and Cheverst, K., “Developing Adaptive

Applications: The MOST Experience”, Journal of Integrated Computer-Aided

Engineering, Volume 6, Number 2, 1999, pp143-157.

[Friday,01a] Friday, A., Davies, N. and Catterall, E., “Supporting Service Discovery,

Querying and Interaction in Ubiquitous Computing Environments”, 2nd ACM

International Workshop on Data Engineering for Wireless and Mobile Access, Santa

Barbara, CA, May 20, 2001. pp. 7-13.

[Friday,01b] Friday, A., Wu, M., Schmid, S., Finney, J., Cheverst, K., Davies, N, "A

Wireless Public Access Infrastructure for Supporting Mobile Context-Aware IPv6

Applications", The First Workshop on Wireless Mobile Internet (Satellite event of 7th

 192

Annual International Conference on Mobile Computing and Networking), Rome,

Italy, July 21, 2001. pp. 11-18

[Fujitsu,98] Fujitsu ICL, Teampad 7600.

http://www.fjicl.com/TeamPad/teampad76.htm.

[Fujitsu,01] Fujitsu ICL Stylistic 1200 Product Specifications Homepage.

http://www.fujitsupc.com/www/support.shtml?support/techspecs/pentabs/Stylistic120

01999.

[Garmin,01] Garmin International GPS Receivers. http://www.garmin.com/

[Glass,00] Glass, S., Hiller, T., Jacobs, S. and Perkins, C., “Mobile IP Authentication,

Authorization, and Accounting Requirements”, RFC 2977, October 2000.

[Goland,99] Goland, Y. Y., Cai, T, Leach, P., Gu, Y. and Albright, S., “Simple

Service Discovery Protocol 1.0: Operating without an Arbiter”, Internet-draft draft-

cai-ssdp-v1-03.txt, work in progress, October 28 1999.

[Goland,00] Goland, Y. Y. and Schlimmer, J. C., “Multicast and Unicast UDP HTTP

Messages”, Internet-draft draft-goland-http-udp-04.txt, work in progress, October, 2

2000.

[GPRS,98] Rysavy, P., “General Packet Radio Service (GPRS)”, GSM Data Today

online journal, http://www.gsmdata.com/paprysavy.html. September 1998.

[GPS,01] All about GPS. Trimble home page available at

http://www.trimble.com/gps/

[Gray,96] Gray, R. S., “Agent Tcl: A Flexible and Secure Mobile-Agent System”,

Proceedings of the 1996 Tcl/Tk Workshop, pages 9-23, July 1996.

[Gray,97] Gray, P. and Salber, D., “Modelling Space for Location-Dependent Tasks:

Why Location-Independent Computing Isn't”, In Ubiquitous Computing: The Impact

on Future Interaction Paradigms and HCI Research, XEROX, March 23-24 1997.

 193

[GSM,00] GSM Association. “An Introduction to the Short Message Service”, 2000.

http://www.gsmworld.com/technology/sms_success.html.

[GUIDE,99] The Lancaster GUIDE Project Home Page.

http://www.guide.lancs.ac.uk/

[Guttman,99a] Guttman, E., Perkins, C. and Kempf, J., “Service Templates and

Service Schemes”, RFC 2609, June 1999.

[Guttman,99b] Guttman, E., Perkins, C., Veizades, J. and Day, M., “Service

Location Protocol”, Version 2. RFC 2608, June 1999.

[Haartsen,98] Haartsen, J., Naghshineh, M., Inouye, J., Joeressen, O. J. and Allen,

W., “Bluetooth: Vision, Goals and Architecture”, Mobile Computing and

Communications Review, 2(4):28-37, 1998.

[Harter,99] Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P., “The

Anatomy of a Context-Aware Application”, In Fifth Annual ACM/IEEE International

Conference on Mobile Computing and Networking - MobiCom 99, pages 59-68,

Seattle, Washington, USA, August, 15-20 1999.

[Healey,00] Healey, J. and Picard, R., “SmartCar : Detecting Driver Stress”, Proc.

ICPR'00, Barcelona, Spain, May 2000.

[Hodes,97] Hodes T., Katz, R., Servan-Schreiber, E. and Rowe, L., “Composable Ad

Hoc Mobile Services for Universal Interaction”, In 3rd ACM/IEEE International

Conference on Mobile Computing and Networking - MOBICOM97, Budapest,

Hungary, 26-30 September 1997. ACM.

[Hong,01] Hong, J. I. and LandayAn, J. A., "Infrastructure Approach to Context-

Aware Computing", Technical Report.

[HP,01] HP Labs. CoolTown Project Web Site, 2001.

http://www.cooltown.hpl.hp.com.

 194

[Hull,97] Hull, R., Neaves, P. and Bedford-Roberts, J., “Towards Situated

Computing”, In the Proceedings of the 1st International Symposium on Wearable

Computers (ISWC'97), pp. 146-153, Cambridge, MA, IEEE. October 13-14, 1997.

[Ibutton,00a] Dallas Semiconductors iButton Product Homepage.

http://www.ibutton.com/ibuttons/index.html

[Ibutton,00b] Dallas Semiconductors Weather Instruments Product Homepage.

http://www.ibutton.com/weather/index.html

[Imielinski,94] Imielinski, T. and Viswanathan, S., “Adaptive Wireless Information

Systems”, In SIG in Database Systems Conference, Tokyo, Japan, 1994.

[IrDA,98] Infrared Data Association. IrDA - The Infrared Data Association Web Site,

1998. http://www.irda.org.

[Izadi,00a] Izadi, S., “Infrastructure Support for Ubiquitous Collaboration”, Ph.D.

Internal Report, September 2000.

[Izadi,00b] Izadi, S., Coutinho, P., Rodden, T., Smith, G. "The FUSE platform:

Supporting Ubiquitous Collaboration within Diverse Mobile Environments". Journal

of Automated Software Engineering. Kluwer Press. To Appear.

[Izadi,01b] Izadi, S., Fraser, M., Benford, S., Flintham, M., Greenhalgh, C., Rodden,

T., and Schnädelbach, H., "Citywide: supporting interactive digital experiences across

physical space", In Proc. Mobile HCI'01.

[Jacobsen,97] Jacobsen, K., Johansen., D., “Mobile Software on Mobile Hardware -

Experiences with TACOMA on PDAs”, Technical Report 97-32, Department of

Computer Science, University of Tromsø, Norway, December 1997.

[Jacobsen,99] Jacobsen, K., Johansen, D., “Ubiquitous Devices United: Enabling

Distributed Computing Through Mobile Code”, ACM Symposium on Applied

Computing 1999 (SAC '99.), pages 399-404.

 195

[Johansen,95] Johansen, D., Renesse, R. and Schneider, F. B., “An Introduction to

the TACOMA Distributed System”, Department of Computer Science, University of

Tromsø, Norway, June 1995, Technical Report 95-23

[Jose,99] Jose, R. and Davies, N., “Scalable and Flexible Location-Based Services for

Ubiquitous Information Access”, In Hans-W Gellersen, editor, HUC99, International

Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany,

September 27-29 1999. Published by Springer-Verlag as Lecture Notes in Computer

Science, vol. 1707, pages 52-66.

[Jose,01a] Jose, R., An Open Architecture for Location-Based Services in

Heterogeneous Mobile Environments, PhD Thesis, Computing Department, Lancaster

University. 2001.

[Jose,01b] Jose, R., Moreira, A., Meneses, F. and Coulson, G., “An Open

Architecture for Developing Mobile Location-Based Applications over the Internet”,

In 6th IEEE Symposium on Computers and Communications, Hammamet, Tunisia, 3-

5 July 2001.

[Joseph,95] Joseph, A., DeLespinasse, A., Tauber, J., Gifford, D. and Kaashoek,

M.F., “Rover: A Toolkit for Mobile Information Access”, Proc. 15th ACM

Symposium on Operating System Principles (SOSP), Copper Mountain Resort,

Colorado, U.S., ACM Press, Vol. 29, Pages 156-171. 3-6 December 1995.

[Katz,94] Katz, R. H., “Adaptation and Mobility in Wireless Information Systems”,

IEEE Personal Communications, 1(1):6-17, 1994.

[Katz,96] Katz, R. H., Brewer, E., Amir, E., Balakrishnan, H., Fox, A., Gribble, S.,

Hodes, T., Jiang, D., Nguyen, G., Padmanabhan, V. and Stemm, M, “The Bay Area

Research Wireless Access Network (BARWAN)”, In 41st IEEE Computer Society

International Conference.(IEEE COMPCON), pages 1-12, Santa Clara, California,

U.S., February 1996. IEEE Press.

[Kenelec,01] Kenelec Scientific Products Homepage. http://www.kenelec.com/

 196

[Kidd,99] Kidd, C. D., Orr, R. J., Abowd, G. D., Atkeson, C. G., Essa, I. A.,

MacIntyre, B., Mynatt, E., Starner, T. E. and Newstetter, W., “The Aware Home: A

Living Laboratory for Ubiquitous Computing Research”, Proc. of the Second

International Workshop on Cooperative Buildings (CoBuild'99), October 1999.

[Kindberg,00] Kindberg, T., Barton, J., Morgan, J., Becker, G., Bedner, I., Caswell,

D., Debaty, P., Gopal, G., Frid, M., Krishnan, V., Morris, H., Pering, C., Schettino, J.,

Serra, B., Spasojevic, M, “People, Places, Things: Web Presence for the Real World”,

Presented at WMCSA December 7-8, 2000, Monterey, California, USA.

[Kistler,91] Kistler, J. J. and Satyanarayana, M, “Disconnected Operation in the Coda

File System”, Proc. 13th ACM Symposium on Operating Systems Principles (SOSP),

Asilomar Conference Center, Pacific Grove, U.S., ACM Press, Vol. 25, Pages 213-

225. 13-16 October 1991.

[LandMarC,00] The LandMarC Project Home Page, 2000, http://www.landmarc.net/

[Lamming,94] Lamming, M. and Flynn, M., “Forget-me-not: Intimate computing in

support of human memory”, In the Proceedings of the FRIEND 21: International

Symposium on Next Generation Human Interfaces, pp. 125-128, Meguro Gajoen,

Japan. 1994.

[Leonhardt,98] Leonhardt, U., Supporting Location-Awareness in Open Distributed

Systems. Ph.D. Thesis, Imperial College of Science, Technology and Medicine,

University of London, 1998.

[Long,96] Long, S., Kooper, R., “Rapid Prototyping of Mobile Context-Aware

Applications: The Cyberguide Case Study”, Proc. 2nd ACM International Conference

on Mobile Computing (MobiCom), Rye, ACM Press, New York, 1996, pp 97-107.

[Marmasse,00] Marmasse N. and Schmandt, C., “Location-Aware Information

Delivery with ComMotion”, Proc. Symposium on Handheld and Ubiquitous

Computing, Bristol, UK. (2000)

[Meyer,98] Meyer, D., “Administratively Scoped IP Multicast”, RFC 2365, July

1998. http://www.faqs.org/rfc/rfc2365.txt.

 197

[Meyers,00] Meyers, B. and Kern, A. “<Context-Aware> schema </Context-

Aware>”, CHI Workshop on The What, Who, When, Where, Why, and How of

Context-Awareness, Affiliated with 2000 ACM Conference on Human Factors in

Computer Systems (CHI 2000), The Hague, Netherlands. April 1-6, 2000.

[Microsoft,99] Microsoft Corporation. Universal Plug and Play Forum Resources

Homepage. UPnP Device Architecture Specification. Technical Report Version 0.90,

10 November 1999. http://www.upnp.org/resources.htm

[Microsoft,01a] Microsoft Corporation. Windows CE Web Site, 2001.

http://www.microsoft.com/windows/embedded/ce/.

[Microsoft,01b] Microsoft Corporation. Pocket PC Web Site, 2001.

http://www.microsoft.com/mobile/pocketpc/.

[MIT,95] Massachusetts Institute of Technology. MIT Smart Rooms, 1995.

http://www.white.media.mit.edu/vismod/demos/smartroom/.

[Mitchell,98] Mitchell, K, “Developing a Context Sensitive Tourist Guide”,

Proceedings of the Fifth Cabernet Radicals Workshop, Valadares, Porto, Portugal,

July 1998.

[Mitchell,01] Mitchell, K., Cheverst, K., Davies, N., “Applications for City Visitors

and Residents : A Proposal for the Mobile IPv6 Systems Research Lab”, Internal

Technical Report, August 2001, available online at http://www.mobileipv6.net/

[MSRL,01] The Mobile IPv6 Systems Research Laboratory. Project Homepage

available at http://www.mobileipv6.net/

[Mummert,95] Mummert, L., Ebling, M. and Satyanarayanan., M., “Exploiting Weak

Connectivity for Mobile File Access,”, Proc. 15th ACM Symposium on Operating

System Principles (SOSP), Copper Mountain Resort, Colorado, U.S., ACM Press,

Vol. 29, Pages 143-155. 3-6 December 1995.

http://www.comp.lancs.ac.uk/computing/users/mitchelk/radicals.doc

 198

[Mynatt,98] Mynatt, E. D., Back, M,. Want, R., Baer, M. and Ellis, J. B., “Designing

Audio Aura”, In the Proceedings of the CHI '98 Conference on Human Factors in

Computing Systems, pp. 566- 573, Los Angeles, CA, ACM. April 18-23, 1998.

[Nelson,98] Nelson, G., “Context-Aware and Location Systems”, Ph.D. Thesis,

University of Cambridge, Computer Laboratory, England. May 1998.

[Noble,97] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J.

and Walker, K. R., “Agile Application-Aware Adaptation for Mobility”, In

Proceedings of the 16th ACM Symposium on Operating System Principles, October

1997.

[Noble,99] Noble, B.D. and Satyanarayanan, M., “Experience with Adaptive Mobile

Applications in Odyssey”, Mobile Networks and Applications (MONET)

Vol. 4, 1999.

[Nokia,99] Nokia Bluetooth Homepage. http://www.nokia.combluetooth

[Nokia,00] Nokia Wireless LAN Homepage.

http://www.nokia.com/networks/wireless_lan/

[Nokia,01] Nokia 9210 Communicator.

http://www.nokia.com/phones/9210/index.html

[Oberlander,97] Oberlander J., Mellish C., O'Donnell, M., “Exploring A Gallery

with Intelligent Labels”, In Proceedings of the Fourth International Conference on

Hypermedia and Interactivity in Museums (ICHIM97), Paris (1997)

[onCue,00] aQtive onCue. http://www.aqtive.com/consumer/oncue/oncue.html

[Oppermann,98] Oppermann, R., Specht, M., “Adaptive Support for a Mobile

Museum Guide”, Workshop on Interactive Application of Mobile Computing

(IMC‟98), Rostock, November 1998.

[Oppermann,99a] Oppermann, R., Specht, M., “A Nomadic Information System for

Adaptive Exhibition Guidance”, David Bearman, Jennifer Trant (eds.): Proceedings of

 199

the International Conference on Hypermedia and Interactivity in Museums (ICHIM

99), pp. 103 - 109, Washington, September 23 - 25, 1999.

[Oppermann,99b] Oppermann, R., Specht, M., Jaceniak, I, “Hippie: A Nomadic

Information System”, Hans-W. Gellersen (ed.): Proceedings of the First International

Symposium Handheld and Ubiquitous Computing (HUC'99), pp. 330 - 333,

Karlsruhe, September 27 - 29, 1999.

[Orinoco,01] Agere‟s ORiNOCO (formerly Lucent WaveLAN) Product Homepage.

http://www.wavelan.com/

[Orr,00] Orr, R. J., Abowd, G. D., “The Smart Floor: A Mechanism for Natural User

Identification and Tracking”, Proceedings of CHI'2000, Netherlands, (April 2000),

The Hague, Netherlands, April 1-6, 2000.

[Palm,00] Palm Inc. Palm.com, 2000. http://www.palm.com/products/index.html.

[Pascoe,98a] Pascoe, J., “Adding Generic Contextual Capabilities to Wearable

Computers”, In the Proceedings of the 2nd IEEE International Symposium on

Wearable Computers (ISWC'98), pp. 92-99, Pittsburgh, PA, IEEE. October 19-20,

1998.

[Pascoe,98b] Pascoe, J, Ryan, N. S. and Morse, D. R., “Human-Computer-Giraffe

Interaction - HCI in the Field”, In the Workshop on Human Computer Interaction

with Mobile Devices, Glasgow, Scotland. May 21-23, 1998.

[Pederson,97] Pederson, E. R. and Sokoler, T., “AROMA: Abstract Representation of

Presence Supporting Mutual Awareness”, In the Proceedings of the 1997 ACM

Conference on Human Factors in Computing Systems (CHI '97), pp. 51-58, Atlanta,

GA, ACM. March 22-27, 1997.

[Perkins,96] Perkins, C., “IP Mobility Support”, RFC 2002, October 1996.

[Perkins,97] Perkins, C., “Mobile IP”, IEEE Communications Magazine, 1997.

[Perkins,99] Perkins, C. and Guttman, E., “DHCP Options for Service Location

Protocol”, RFC 2610, June 1999.

 200

[Ponintcast,96] The Pointcast Technology Homepage. http://www.infogate.com/

[Pointsix,01] Point Six Inc. Homepage. http://www.pointsix.com/

[Randell,00] Randell, C. and Muller, H., “The Shopping Jacket: Wearable Computing

for the Consumer”, In Peter Thomas, editor, Personal Technologies vol.4 no.4, pages

241--244. Springer, September 2000.

[Rhodes,96] Rhodes, B. and Starner, T., “The Remembrance Agent: A Continuously

Running Automated Information Retrieval System”, The Proceedings of The First

International Conference on The Practical Application of Intelligent Agents and Multi

Agent Technology (PAAM '96), London, UK, April 1996, pp. 487-495.

[Román,00] Román, M. and Campbell, R. H., “Gaia OS: Active Spaces”, In

Proceedings of the 9th ACM SIGOPS European Workshop, Kolding, Denmark,

September 2000.

[Ryan,99] Ryan, N., “ConteXtML: Exchanging Contextual Information between a

Mobile Client and the FieldNote Server”, Project Homepage.

http://www.cs.ukc.ac.uk/projects/mobicomp/fnc/ConteXtML.html

[Salutation,99] Salutation Consortium. “Salutation Architecture Specification (Part-

1)”, Technical Report Version 2.0c, 1999.

[Satyanarayanan,85] Satyanarayanan, M., Howard, J. H., Nichols, D. N.,

Sidebotham, R. N. Spector, A. Z. and West, M. J., “The ITC Distributed File System:

Principles and Design”, Proc. 10th Symposium on Operating System Principles

(SOSP), Orcas Island, Washington, U.S., ACM Press, December 1985.

[Satyanarayanan,90] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E.,

Siegel, E. H. and Steere, D. C., “Coda: A Highly Available File System for a

Distributed Workstation Environment”, IEEE Transactions on Computers, Vol. 39

No. 4, Pages 447-459. April 1990.

 201

[Scheirer,00] MIT Media Lab, Affective Computing Research Project. “Expression

Glasses Home page”,

http://vismod.www.media.mit.edu/people/rise/jocelyn/tttpage.html

[Schilit,94a] Schilit, B. N. and Theimer, M., “Disseminating Active Map Information

to Mobile Hosts”, IEEE Networks, pages 22-32, October 1994.

[Schilit,94b] Schilit, B. N., Adams, N. I. and Want, R., “Context-aware Computing

Applications”, In the Proceedings of the 1st International Workshop on Mobile

Computing Systems and Applications, pp. 85-90, Santa Cruz, CA, IEEE. December 8-

9, 1994.

[Schilit,95] Schilit, W. N., “A System for Context-Aware Mobile Computing”, Ph.D.

Thesis, Columbia University, New York, 1995.

[Schmid,01] Schmid, S., Finney, J,. Wu, M., Friday, A., Scott, A. C., Shepherd, W.

D., "An Access Control Architecture for Metropolitan Area Wireless Networks", in

Proc. 8th International Workshop on Interactive Distributed Multimedia Systems

(IDMS), September 4-7, 2001, Lancaster, UK.

[Schmidt,98] Schmidt, A., Beigl, M. and Gellersen, H. W., “There is More to Context

than Location”, In Interactive Applications of Mobile Computing, Rostock, Germany,

24-25, November 1998.

[Schmidt,98b] Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven,

K. V. and Velde, W. V., “Advanced Interaction in Context”, In the Proceedings of

the 1st International Symposium on Handheld and Ubiquitous Computing (HUC '99),

pp. 89-101, Karlsruhe, Germany, Springer-Verlag. September 27-29, 1999.

[Schmidt,00] Schmidt, A., Takaluoma, A. and Mntyjrvi, J., “Context-Aware

Telephony over WAP”, Springer-Verlag, London, Ltd., Personal Technologies,

Volume 4, pages 225-229. Short paper presented at Handheld and Ubiquitous

Computing (HUC2k), HP Labs, Bristol, UK, September 2000.

[Scourias,00] Scourias, J., “Overview of the Global System for Mobile

Communications”, http://ccnga.uwaterloo.ca/~jscouria/GSM/gsmreport.html.

 202

[Shafer,00] Shafer, S., Brumitt, B., and Meyers, B. “The EasyLiving Intelligent

Environment System”, CHI Workshop on Research Directions in Situated Computing,

April 2000.

[Siewiorek,98] Siewiorek D., Smailagic, A., Bass, L., Siegel, J., Martin, R. and

Bennington, B., “Adtranz: A Mobile Computing System for Maintenance and

Collaboration”, Proc. Symposium on Wearable Computers.

[Sikkel,97] Sikkel, K., “A Group-based Authorization Model for Cooperative

Systems”, In: Proc. of ECSCW‟97, Kluwer Academic Publishers, 345-360 (1997).

[Spectrix,99] Spectrix Corporation. “Wireless Networks for People in Motion”,

http://www.spectrixcorp.com/products/spectrixlite.html. 1999.

[Spiteri,98] Spiteri, M. and Bates, J., “An Architecture to Support Storage and

Retrieval of Events”, In IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing (Middleware '98), Lake District, UK,

September 15-18 1998.

[Sony,01] Sony Electronics Viao Homepage. http://www.sonystyle.com/vaio/

[Sun,99a] Sun Microsystems. HotJava HTML Component Product Homepage.

http://www.java.sun.com/products/hotjava/

[Sun,99b] Sun Microsystems. Jini Architecture Specifcation - 1.0. Technical Report,

Sun Microsystems, January 1999.

[Sun,99c] Sun Microsystems. Jini Web Site, 1999. http://www.sun.com/jini/.

[Sun,00d] Sun Microsystems. PersonalJava Application Environment, 2000.

http://java.sun.com/products/personaljava.

[Swedberg,99] Swedberg, G., “Ericsson's Mobile Location Solution”, Ericsson

Review, (4):214-221, 1999.

[TIC,01] The Lancaster City Council Tourist Board Web Site. The Lancaster GUIDE

System, http://www.lancaster.gov.uk/attractions/

 203

[UPnP,00] Universal Plug and Play Forum, “Universal Plug and Play Web Site”,

2000. http://www.upnp.org/.

[Voyager,01] Object Space Product Web Site, available online at

http://www.objectspace.com/products/voyager/

[Wade,00] Wade, S., “An Investigation into the use of the Tuple Space Paradigm in

Mobile Computing Environments”, Ph.D. Thesis, Computing Department, Lancaster

University, September 1999.

[Waldo,99] Waldo, J., “The Jini Architecture for Network-Centric Computing”,

Communications of the ACM, 42(7):76-82, 1999.

[Want,92] Want, R., Hopper, A., Falcao, V. and Gibbons, J., “The Active Badge

Location System”, ACM Transactions on Information Systems, 10(1):91-102, 1992.

[Want,95] Want, R., Schilit, B. N., Adams, N., Gold, R., Petersen, K., Greenberg, D.,

Ellis, J. and Weiser, M., “An Overview of the ParcTab Ubiquitous Computing

Environment”, IEEE Personal Communications, 2(6):28-43, 1995.

[Want,96] Want, R., Schilit, B. N., Adams, N. I., Gold, R., Petersen, K., Goldberg,

D., Ellis, J. R. and Weiser, M., “The Parctab Ubiquitous Computing Experiment”, In

Tomaz Imielinski and Henry F Korth, editors, Mobile Computing, pages 45-101.

Kluwer Academic Publishing, 1996.

[WAP,00a] Wireless Application Protocol Forum Ltd. WAP Forum Web Site, 2000.

http://www.wapforum.org/.

[Ward,97] Ward, A., Jones, A. and Hopper, A., “A New Location Technique for the

Active Office”, IEEE Personal Communications, 4(5):42-47, 1997. MPEG Video

available at ftp.uk.research.att.com/pub/videos/qsif-200/bat-qsif-200.mpg

[Weiser,91] Weiser, M., “The Computer for the 21st Century”, Scientific American,

265(3):94-104, September 1991.

[Weiser,93] Weiser, M., “Some Computer Science Issues in Ubiquitous Computing”,

Communications of the ACM, 36(7):75-84, 1993.

 204

[Xircom,01] Xircom Netwave Product Homepage.

http://www.xircom.com/cda/page/0,1298,0-0-1_1-1629,00.html

 205

Appendix A

Creating a User Profile

A.1 Introduction

When a tourist to the city of Lancaster first receives their GUIDE unit they are

expected to perform a short configuration task in order to specify their context

constraints, that is, their personal preferences. This configuration task needs to be

straightforward since it is their first experience of the system, and therefore, a simple

wizard style interface has been adopted in order to guide users through the process of

creating a profile. Chapter three (see section 3.7.1) provided an overview of the user

interface used to customise the GUIDE system, the following section shows the

configuration process in more detail.

A.2 The GUIDE User Preferences Wizard

Before the user is asked to perform any tasks a short summary is presented (see figure

A.1 below).

 206

Figure A.1 - GUIDE Customisation wizard, step one

After clicking the next button, the following step (step 2) will be displayed, as shown

in figure A.2. During this stage, the user is able to specify their name, age, preferred

reading language and their specific tourist interests.

Figure A.2 - GUIDE Customisation wizard, step two

Once the user has chosen their personal details, they are ready to move onto step three

to configure any privacy options relating to how their location information is shared

and accessed by other group members. Step three allows a user to specify whether or

not they with to be visible and/or contactable by others members of their group (if

they are indeed travelling as part of a group), as shown in figure A.3.

 207

Figure A.3 - GUIDE Customisation wizard, step three

Once a visitor has chosen their privacy preferences at the group level, they are ready

to move onto step four to configure any other context sharing properties. More

specifically, step four enables a user to stipulate whether or not they wish to be visible

and/or contactable by others members of the GUIDE system. Furthermore, a number

of additional options are available which include whether they wish to have their real

name revealed, choose to use an alternative nickname or remain anonymous, as

shown in figure A.4.

Figure A.4 - GUIDE Customisation wizard, step four

 208

In addition to the four steps introduced above, an advanced option tab is also available

to users wishing to further tailor the operating parameters. More specifically, the

GUIDE application enables users to stipulate several QoS constraints associated with

their location context. In essence, users are able to control several parameters in

relation to making use of a location service: the frequency of updates required, the

approximate battery consumption required and the positional accuracy required (as

shown in figure A.5). It should be noted that a trade off exists between positional

accuracy and power consumption. More specifically, a user who requests a higher

degree of positional accuracy is assumed to require a location mechanism such as a

local GPS compass. In a situation where positional accuracy is of less importance an

alternative technology, such as the beacon based approach detailed in chapter three,

may be utilised since this is likely to reduce the battery consumption of the mobile

device.

Figure A.5 – GUIDE Advanced Options

This simple configuration process provides enough information to enable the context-

sensitive features found within the GUIDE system to be used effectively.

 209

Appendix B

GUIDE Tags: Syntax and Semantics

B.1 Introduction

This appendix details the use of HTML tags embedded with hypertext pages to enable

context sensitive content to be created dynamically within the GUIDE system. An

overview of the tags can be found in section 3.4.3. This section describes in more

detail the syntax and semantics relating to the range of tags in use by the GUIDE

prototype application. Where appropriate, illustrative examples (including

screenshots) are provided.

B.2 Syntax and Semantics

In order support the display of context-sensitive content to users, the GUIDE

prototype application makes use of the following tags:

 INSERT: The insert tag is used to query both the information model (location

objects) and user the model (user preferences) to determine contextual

attributes to be inserted dynamically into hypertext pages. For example, to

personalise a hypertext page and insert a visitor‟s name.

 INTEREST: The interest tag is used to highlight a particular section of

hypertext as containing (potentially useful) information to users. This could

 210

be historic or architectural information and in order to ascertain whether or not

the information should be displayed the user model will be queried.

 METATAG: The meta tag is similar to the interest tag, however, the use of a

meta tag does not involve any content to be modified dynamically. Instead,

the tag is used simply to denote that a particular page contains tourist specific

information. For example, <GUIDETAG METATAG HISTORY> would be used

to identify a page containing historical information relating to one of the city‟s

landmarks.

 COMMENT: The comment tag is used to query the information model

(location objects) to determine whether or not any previous users of the system

have left any personal comments that can be retrieved. In essence this

provides a virtual guest book to users of the GUIDE system.

 COLLABORATE: The collaborate tag is used to query the GUIDE cell

servers for a list of users present (currently or previously that day) at a

particular location. For example, a user wishing to visit Lancaster Castle may

decide to ask another user‟s opinion on the landmark before making the

journey across the city. The collaborate tag would enable the system to reveal

others currently at that location taking into account their privacy concerns (see

section A.2).

 UPDATE: The update tag is used to update state within both the information

and user models.

Figure B.1 provides an overview of the steps involved in producing a hypertext page

dynamically. The following sub-sections describe, using examples, the GUIDE tags

currently in use by the current GUIDE prototype application.

 211

INSERT

INTEREST

determine

identifier

USERNAME

GREETING

NEIGHBOURS

determine

action

User model

Object model

get

username

LOCATION

get

location

getcurrent location

e.g. Lancaster Castle

e.g. Keith Mitchell

gethistory

get nearbyobject references

e.g. Welcome back to

lancaster Castle Keith.

e.g. Castle, Folly, Priory

determine

interest

and value

HISTORY > 0

e.g. This historic landmark was ...

get u
ser

interest ra
tin

gs

Example GUIDETAG actions

Example GUIDETAGS

get nearby

object references

Figure B.1 - Creating a dynamic hypertext page

B.2.1 The INSERT Tag

The insert tag is used to query both the information model (location objects) and user

the model (user preferences) to determine context dynamically. For example, to

personalise a hypertext page and welcome a particular user to a landmark, a

combination of tags can be used, as shown in figure B.1.

When the GUIDE filter processes an INSERT tag, any aspect of the information or

user model may be queried and the result (which is always hypertext markup) forms

part of the personalised page. For example, the following tag; <GUIDETAG INSERT

FULLUSERNAME> would result in the following being displayed to a user (see figure

B.2

Figure B.2 - Personalising a tourist page

 212

Inserting information relating to nearby locations involves both the user model and

environment model. Figure B.3 illustrates the process involved when the GUIDE

filter processes a hypertext page containing the <GUIDETAG INSERT NEIGBOURS>.

Environment Model

Location Objects

Object References (Neighbour Relations)

priory

follytic

castle

query location object

(part of environment model)

list of object refernces.

e.g. folly, castle, priory

query environment model

return HTML snippet

Original Hypertext Page

query user model

for personal context

user context such as current

location, history and user interests

user

model

Personal Details

Interests e.g. History, Maritime, vegetarian

e.g. Name, Age, Sex

History e.g. Visited landmarks, tours followed

Personalised (ordered) hypertext page relecting

current environment and usercontext

User Model

priory

Description

URLs e.g. Homepage and Image URL

e.g. summary descriptyion for attraction

State e.g. Opening hours, current status

Environment Model

Context e.g. Associated interests such as historical landmark

GUIDETAG

INSERT

NEIGHBOURS

Lancaster

Castle - John

of Gaunt....

Enumerate through

references querying

context

Process Page

e.g. INSERT

NEIGHBOURS

Query user model to

ascertain profile

Sort attractions

contextual

information

folly

castle

Figure B.3 - Inserting nearby places

Figure B.4 shows the result viewed by a user after querying the system for a list of

nearby attractions.

Figure B.4 - Creating dynamic hypertext content

B.2.2 INTEREST

The interest tag is used to highlight information with particular attributes, for

example, tagging some hypertext content as historical. The use of this tag requires the

 213

use of a </GUIDETAG> closing tag. The processing of this tag involves querying the

context associated with the user profile in order to determine their user preferences. If

a query evaluates to true the hypertext information contained within the tag is

displayed, otherwise it is not. The statements can be combined using the AND and

OR logical operators. The syntax is as follows;

<GUIDETAG FUNCTION (STATEMENT AND | OR STATEMENT) >

and examples include

<GUIDETAG INTEREST (HISTORY GREATER 50) AND (ARCHITECTURE LESS

50) >

… HTML …

</GUIDETAG>

B.2.3 METATAG

The meta tag is used to highlight hypertext pages with particular interests. These tags

cause no visible change to the page content but indicates that a hypertext page

contains content of particular relevance. The use of this tag causes the user

preferences to be queried, for example <GUIDETAG METATAG HISTORY>, would be

used to indicate that the hypertext pages contains historical content. If the user profile

is queried and it is shown that the user has no interest in this option then a virtual

counter relating to the history preference will be incremented. Should the virtual

counter reach a specified limit, the system will notify the user and bring to their

attention that they have visited a large number of pages containing history related

information (see figure B.5 below). This tag is used to ensure visitors to not miss

large amounts of hypertext information relating to a specific subject.

 214

Figure B.5 – Updating the user profile

B.2.4 COMMENT

The comment tag is used to query the information model (location objects) to

determine whether any previous users of the system have left personal comments

relating to a particular landmark. This feature is used to allow visitors to query the

system and search for comments/feedback relating to particular attractions, thus acting

as a virtual guest book to the city‟s landmarks. Furthermore, any user of the system is

able to leave their own comment relating to any of the city‟s attractions. For example,

the following tag <GUIDETAG COMMENT SHIRE> would result in the following

screen being displayed to a user of the system (see figure B.6).

Figure B.6 - Viewing comments left by other tourists

B.2.5 COLLABORATE

The collaborate tag is used to query the GUIDE cell servers for a list of current or

pervious users (that day) that have been shown to have visited a particular location.

 215

For example, a visitor may wish to have lunch at the Folly Café and may be interested

in gaining an opinion of the café from another visitor before entering the café. The

collaborate tag would enable the system to reveal others currently at that location

taking into account their privacy issues (see Appendix A). The GUIDE filter object

expands the tag by checking that the visitor has network connectivity and (given that

this connectivity is available) makes a remote request for a list of GUIDE users

currently in the specified cell. The server responds to the query by returning the

identity of those visitors currently recorded as being present at the specified location.

For privacy purposes, the actual name of a visitor is only passed back to the client if

the visitor has agreed to be contactable (and the permissions for this are stipulated in

the user's profile). If a visitor has requested anonymity then a unique id is assigned

and returned for that visitor in order to mask the visitor‟s identity, e.g. anonymous1.

For example, the following tag <GUIDETAG COLLABORATE FOLLY>, would result in

the following page being displayed to a user of the system (see figure B.7 below).

Figure B.7 - The use of the collaborate tag

After viewing this page, a user wishing to initiate communications with a fellow

GUIDE user to ask their opinion of an attraction may request them to provide a simple

rating. To do this the following dialog box can be completed, as shown in figure B.8.

 216

Figure B.8 - Requesting a rating for a city attraction

B.2.6 UPDATE

The update tag is used primarily as part of the locator when a user becomes lost.

When visitors leave cell coverage and up-to-date positioning information becomes

unavailable, the GUIDE system tries to locate the visitor by establishing a form of

partnership between itself and the visitor. More specifically, the visitor is shown a

series of thumbnail pictures showing attractions in the vicinity of the visitor‟s last

known location, as shown in figure B.10. Hopefully, the visitor is then able to

recognise and select one of the pictures in order to enable the GUIDE system to once

again ascertain the visitor‟s location within the city. Once the location is determined

an UPDATE POSITION tag within a hypertext page can be used to force the system to

update it‟s location context (i.e. a virtual beacon) and user interface (see figure B.9,

B.10 and B11).

 217

Figure B.9 - The GUIDE system detects that a user is lost

Figure B.10 - The GUIDE system presents a series of thumbnails

Figure B.11 - The GUIDE System updates the user interface

 218

Appendix C

Developing a Context-Sensitive City

Tour

C.1 Introduction

This appendix provides a pseudo-code algorithm and flowchart to detail the tour

creation process used by the Lancaster GUIDE system when creating personalised,

intelligent tours of the city of Lancaster. The creation of a city tour does not involve

determining the shortest route between attractions within the city, but offers a more

intelligent tour based on a variety of contextual factors such as visitor interests, the

attractions of interest, travel constraints (such as wheelchair use), time (e.g. time

available to take a tour), time sensitivity of attractions (since in many cases there are

good and bad times to visit specific attractions), weather, and financial constraints.

In essence, when constructing a guided tour of the city, the tour guide component

attempts to quantify (evaluate) the quality of a tour by allocating numeric values

(scores) to attractions and routes between attractions. These values are influenced by

both the current context (weather, time etc.) and the user‟s preferences and tours can

be ordered by comparing their total scores. In more detail, the system dynamically

generates a full set of tours that encompass the attractions requested, produces a total

 219

score for each permutation and then recommends to the visitor the tour with the

highest score (most suitable).

Furthermore, the system incorporates a number of “tricks” to try and improve a given

tour‟s overall score. For example, consider the following scenario. It is 9.30am and a

tourist has just picked up a GUIDE unit from the TIC. They ask the system to

generate a day-long tour that takes in just two places, a nearby museum (which opens

at 10.30 am) and a park on the other side of town. The system recognizes that the best

order is to visit the museum first and then spend the afternoon in the park and will

suggest “padding” activities (e.g. nearby cafés, exhibitions or related landmarks) to

occupy the visitor until the museum opens. The pseudo-code algorithm shown in

figure C.1 forms the basis of the tour creation process. Figure C.2 shows a flow

diagram outlining the tour creation process.

 220

find all permutations of required places

for each permutation

averageTime = total travel time + average duration of each place + if (user wants lunch) 1 hour time for lunch

minTime = total travel time + min duration of each place + if (user wants lunch) 1 hour time for lunch

 if (averageTime > time available)

 if (total travel time + min duration of each place > time available)

 delete this permutation

 else

 mark this permutation bad choice

 if (no permutations left)

 ask user to remove a required place

 while (no tour)

 possible invalids = 0

 for each valid and not bad choice permutation(using minimum duration)

 total score = 0

 for each place in current permutation

 if (12 < time < 14 and user wants lunch)

 find food place in nearby places with traveltime from last place to there and from there to next place

 + averageDuration there fits in 1 hour and its score != -1

 insert this place in permutation

 add 1 hour to time

 add score to total score

 for each 5 min later than 13.30h substract 5 from total score

 time = time + travelTime from last place to this

 score = place.evaluate(time , budget)

 if (score == -1)

 invalids = invalids + 1

 if (possible invalids < invalids)

 mark permutation invalid

 else

 221

 add 30 min to time and evaluate until score != -1

 if (never valid)

 mark permutation invalid

 else

 find place in nearby places with

 traveltime from last place to there and from there to next place

 + averageDuration there fits in timegap and its score != -1

 insert this place in permutation

 else

 add score to total score

 if (all tours invalid)

 do the above with bad choices

 if (still all tours invalid)

 possible invalids + 1

 if (possible invalids > number of required places)

 return no tour

 else

 if (valid tours)

 tour found

 return tour with highest total score

Figure C.1 - The tour creation process algorithm

 222

calcullate all

possible

permutations of

places 1 to n

travelTime =

travel-time for

permutation i

avgDuration =

average duration for

permutation i

travelTime +

avgDuration

<available time?

minDuration =

minumum duration

of permutation i

starting place

place 1

...

place n

end place

i = i + 1

travelTime +

minDuration <

available time?

store as 'avg'

permutations

store as 'min'

permutations

delete

permutation i

all permutations

processed ?
 No

 Yes

 No

 Yes

 No

'avg' permutations

available ?

 Yes

'avg' permutations

available ?

 No

no valid tours No

routeSet =

'min' routes
delete

'min' routes

routeSet =

'avg' routes

 Yes

 Yes

any scores

available ?
 No

get

permutation

with highest

score

more than

one ?

 Yes

return permutation

with highest score

and shortest

travel-time

 Yes

return permutation No

all routes

processed ?

 Yes

 No

i = i + 1

take

permutationi

of routeSet

k = k + 1
take place k of

permutation i

all places

processed ?
 No

 Yes

time = time +

direction of place k

score > 0

(place valid)

 Yes

arrival time =

lunchtime ?

 No

time = time +

traveltime from place

k-1 to place k

find lunch place Yes

insert lunch place

in permutation

at position k

score = evaluate

place k at time

time = time +

lunch duration

delete

permutation i

time = first

valid time

insert place

time

found ?

 No

 Yes

score = (evaluated

place k at time)

 - punishement

determine time

until place valid
 No

Figure C.2 - GUIDE tour creation flowchart

 223

Appendix D

An XML User Profile

D.1 Introduction

This appendix provides a sample XML description relating to the user profiles used

within the GUIDE application prototypes. A series of Java based XML parsers are

utilised to interpret such XML documents in order for instances of the

GuideUserProfile class to be created. Furthermore, serialised instances of a

GuideUserProfile object stored within the context repository may be un-serialised

and stored as an XML document, enabling access to the data devices such as WAP

enabled mobile phones.

 224

D.2 A User Profile Specified in XML

<?xml version="1.0" encoding="UTF-8" ?>

<profile>

<applications>

 <application>
 <applicationname>GUIDE</applicationname>

 <username>km</username>

 <fullname>Keith Mitchell</fullname>

 <age>26</age>

 <anonymous>false</anonymous>

 <contactable>true</contactable>

 <language>english</language>

<interests>

<history>100</history>

<maritime>100</maritime>

<vegetarian>0</vegetarian>

<architecture>100</architecture>

</interests>

<contexttypes>

<context>

 <type>location</type>

 <constraints>*</constraints>

 <scope>all</scope>

</context>

<context>

 <type>user</type>

 <constraints>*</constraints>

</context>

</contexttypes>

</application>

</applications>

</profile>

